Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जाने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

"पुराने को छोड़ नये के तरफ"
Jawaharlal Nehru
“Step Out From the Old to the New”

SINTERED FERROUS MATERIALS, CARBURIZED OR CARBONITRIDED — DETERMINATION AND VERIFICATION OF CASE-HARDENING DEPTH BY A MICRO-HARDNESS TEST

ICS 77.040.10;77.160
NATIONAL FOREWORD

This Indian Standard which is identical with ISO 4507 : 2000 'Sintered ferrous materials, carburized or carbonitrided — Determination and verification of case-hardening depth by a micro-hardness test' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Power Metallurgical Materials and Products Sectional Committee and approval of the Metallurgical Engineering Division Council.

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker in the International Standard while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their respective places are listed below along with their degree of equivalence for the editions indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 2639 : 2002 Steel — Determination and verification of the effective depth of carburized and hardend cases</td>
<td>IS 6416:1988 Methods for measuring case depth of steel (first revision)</td>
<td>Technically Equivalent</td>
</tr>
</tbody>
</table>

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2 : 1960 'Rules for rounding off numerical values (revised)'.

Power Metallurgical Materials and Products Sectional Committee, MTD 25
Indian Standard

SINTERED FERROUS MATERIALS, CARBURIZED OR CARBONITRIDED — DETERMINATION AND VERIFICATION OF CASE-HARDENING DEPTH BY A MICRO-HARDNESS TEST

1 Scope

This International Standard specifies methods for determining the case-hardening depth of carburized or carbonitrided sintered ferrous materials by micro-hardness measurement.

The methods are adapted to materials having porosity and only apply to quenched materials.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 2639, Steel — Determination and verification of the effective depth of carburized and hardened cases.

ISO 4498(−1), Sintered metal materials, excluding hardmetals — Determination of apparent hardness and micro-hardness.

3 Term and definition

For the purposes of this International Standard, the following term and definition applies.

3.1 case-hardening depth
CHD
distance, measured normal to the surface of a case-hardened workpiece at a point at which the hardness corresponds to a specified limit

4 Principle

Measuring of the micro-hardness by the Vickers testing method in accordance with ISO 4498:—, Procedure 2. It is measured on a section taken normal to the surface.

Drafting a curve representing hardness as a function of distance from the surface of the test piece. This allows a graphical determination of the case depth (method A).

Reading the case-hardening depth from this curve at the point corresponding to a specified hardness, usually 550 HV 0,1.

By agreement between the parties concerned, another value may be specified. In this case, the specified value is distinguished from the standard value by the symbol HG (given value).

In this International Standard the symbol HG is used to mean the specified hardness corresponding to the case depth, considering that 550 HV 0,1 is a particular value for it (it is the standard one).

The basic method A may be simplified for rapid spot checking (method B). In method B, the hardness is measured at two points situated at either side of the approximate case depth. The accurate case-hardening depth is then obtained by interpolation.

5 Apparatus

5.1 Vickers or Knoop micro-hardness testing machine, capable of applying a predetermined load of 0,980 7 N(HV.0,1) to an accuracy of ±1 %.

5.2 Measuring instrument, capable of measuring the diagonals of the indentation to an accuracy of ±0,5 pm.

6 Procedure

6.1 General

Micro-hardness measurements shall be made on a section of the sintered piece cut at right angles to the surface in an area chosen by agreement between supplier and user.

The test shall be made with a Vickers or Knoop diamond indentor.

The test load shall be 0,980 7 N (HV 0,1).

6.2 Preparation of sample

The surface on which the measurement is to be made shall be polished to a smoothness sufficient to permit correct measurements of the micro-hardness indentation. All precautions shall be taken to avoid damage to the edges of the specimen, overheating and changes of the surface due to smearing of the pores.

NOTE Preparation of the sample may be facilitated by impregnation with a thermosetting plastic.
6.3 Method A — Determination of case-hardening depth

6.3.1 Position of micro-hardness impressions

See Figure 1.

For each depth \(d_1, d_2, d_3, \text{ etc.} \), make at least three indentations.

Discard the lowest individual hardness value if it is obviously too low (e.g. owing to porosity) or if by including this low value the hardness range of the other points is more than doubled. In all cases of a discarded value, make a replacement indentation.

Make indentations at depths \(d_1, d_2, d_3, \text{ etc} \) (measured in millimetres from the surface) as follows:

\[0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.75; 1; 1.5; 2; 3 \text{ where } d_1 = 0.05 \text{ etc.} \]

The distance between two adjacent indentations, \(S \), shall be not less than 2.5 times the diagonal of the impression.

Indentations shall be within a zone, perpendicular to the surface, of width \(W \) equal to 1.5 mm.

![Figure 1 — Position of micro-hardness impressions](image)

6.3.2 Evaluation

Calculate the arithmetic mean of the hardness values obtained at each depth and plot these mean values on a graph of hardness versus distance from the surface (see Figure 2). Draw the best fit through the plotted points.

Then draw the horizontal line at the ordinate HG corresponding to the specified value of hardness.

The case-hardening depth CHD is then given by the abscissa of the intercept of this line and the curve of variation of hardness.

The accuracy of the determination depends upon the number of indentations at each depth.

Extra indentations in the region of the approximate case depth will improve accuracy if the result is imprecise due to a small angle of intersection between the curve and the horizontal line.
6.4 Method A modified — Determination of case-hardening depth

6.4.1 Position of micro-hardness impressions

When the microstructure and porosity conditions are such that it is impractical to take hardness readings at preselected depths, then it is permissible to simply plot individual hardness readings versus depth below surface.

6.4.2 Evaluation

Draw the best fit through the plotted points.

Draw a horizontal line at the ordinate, HG, corresponding to the specified value of hardness.

The case-hardening depth CHD is then given by the abscissa of the intercept of this line and the curve of variation of hardness.

6.5 Method B — Inspection test for case-hardening depth

6.5.1 General

It is assumed that the curve which represents the case depth as a function of hardness can be regarded as a straight line in the region of the case-hardening depth established by method A.

6.5.2 Position of micro-hardness impressions

Prepare the section in the same manner as for method A, but measure the micro-hardness at only two depths, \(d_1 \) and \(d_2 \) from the surface (see Figure 3).

Choose the depths \(d_1 \) and \(d_2 \) so that \(d_1 \) is less than the estimated case-hardening depth and \(d_2 \) is greater than the estimated case-hardening depth but less than the total case depth.
Choose \(d_1 \) and \(d_2 \) on the basis of past experience with similar materials or a previously plotted hardness curve, established on a similar material, as in method A. Make at least five micro-hardness impressions at each of the two depths.

The distances between adjacent impressions, and also the elimination of low values, shall be subject to the same rules as in method A.

If the hardnesses measured at depths \(d_1 \) and \(d_2 \) are both greater than or both less than that of the case-hardening depth, then method A shall be used to determine the case-hardening depth.

6.5.3 Evaluation

Calculate the arithmetic mean of the hardness values obtained at each depth. Then use one or the other of the two following methods.

a) Graphical method (see Figure 3)

Use a graph of hardness versus distance from the surface. Plot the two mean hardnesses \(H_1 \) and \(H_2 \) against the depths \(d_1 \) and \(d_2 \) respectively. Join the two points by a straight line.

The case-hardening depth CHD is given by the abscissa of the intercept of this line with a horizontal line drawn on the ordinate HG (corresponding to specified case hardness).

b) Calculation method

Calculate the case-hardening depth CHD using the formula

\[
CHD = d_1 + \frac{(d_2 - d_1)(H_1 - HG)}{H_1 - H_2}
\]

where

- HG is the specified hardness;
- \(H_1 \) and \(H_2 \) are the arithmetic means of the values of hardness measured at distances \(d_1 \) and \(d_2 \) (see Figure 3).

Figure 3 — Determination of case-hardening depth using method B
7 Precision

Interlaboratory evaluation conducted by MPIF\(^2\) using a slightly different protocol and reported in MPIF 52\(^3\) gives the following precision statement.

— Repeatability: for a case-hardening depth of 0.75 mm, duplicate results from the same laboratory shall not be considered suspect at the 95 % confidence level unless they differ by more than 0.14 mm.

— Reproducibility: for the same test specimen, duplicated results from two different laboratories shall not be considered suspect at the 95 % confidence level unless they differ by more than 0.47 mm.

8 Test report

The test report shall include the following information:

a) reference to this International Standard, i.e. ISO 4507;

b) all details necessary for identification of the test sample (with details of heat treatment, if necessary);

c) the area of the part on which the tests were carried out;

d) the method used (method A, method A modified or method B) and the specified value of hardness corresponding to case-hardening depth;

e) the result obtained;

f) all operations not specified by this International Standard or regarded as optional;

g) details of any occurrence which may have affected the result

\(^2\) Metal Powder industries Federation, USA

\(^3\) MPIF 52:1994, Determination of Effectiveness of Case Depth of Powder Metallurgy Products.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of the these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard alongwith amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc No.: MTD 25 (4828).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402
Website: www.bis.org.in

Regional Offices:

Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002
Telephones: 2323 7617, 2323 3841

Eastern: 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
KOLKATA 700054
Telephones: 2337 8499, 2337 8565

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160022
Telephones: 260 3843, 260 9285

Southern: C.I.T. Campus, IV Cross Road, CHENNAI 600113
Telephones: 2254 1216, 2254 1442, 2254 2519, 2254 2315

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400093
Telephones: 2832 9295, 2832 7858, 2832 7891, 2832 7892

Branches: AHMEDABAD, BANGALORE, BHOPAL, Bhubaneswar, COIMBATORE, DEHRADUN,
FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW,
NAGPUR, PARWANOOI, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM,
VISAKHAPATNAM.

PRINTED BY GENERAL MANAGER, GOVT. OF INDIA PRESS, NASHIK-422 006