THE 16-BIT SUPER PROCESSORS ARE HERE!

DON LANCASTER TELLS HOW TO WIN THE MICRO GAME. P. 36

80-COLUMN DRAGON SLAIN: WIDE-SCREEN WIZARDRY FOR APPLE II. P. 100

THE ESSENTIALS OF EFFICIENT PROGRAMMING. P. 198
Percom mini-disk systems start as low as $599.95, ready to plug in and run. You can’t get better quality or a broader selection of disk software from any other microcomputer disk system manufacturer—at any price!

Features: 1-, 2- and 3-drive systems in 40- and 77-track versions store 102K- to 591K-bytes of random access data on-line. Controllers include explicit clock/data separation circuit, motor inactivity time-out circuit, buffered control lines and other mature design concepts. ROM DOS included with SS-50 bus version—optional DOSs for EXORciser* bus • extra PROM sockets on-board • EXORciser* bus version has 1K-byte RAM • supported by extended disk operating systems; assemblers and other program development/debugging aids; BASIC, FORTRAN, Pascal and SPLM languages; and business application programs.

The SBC/9™. A “10” By Any Measure.

The Percom SBC/9™ is an SS-50 bus compatible, stand-alone Single-Board Computer. Configured for the 6809 microprocessor, the SBC/9™ also accommodates a 6802 without any modification. You can have state-of-the-art capability of the ’89. Or put to work the enormous selection of 6800-coded programs that run on the ’02.

The SBC/9™ includes PSYMON™, an easily extended 1-Kbyte ROM OS. Other features include:

• Total compatibility with the SS-50 bus. Requires no changes to the motherboard, memory or I/O.
• Serial port includes bit-rate generator. RS-232-C compatible with optional subminiature “D” connector installed. 10-pin Molex connector provided.
• Eight-bit, non-latched, bidirectional parallel port is multi-address extension of system bus. Spans a 30-address field; accommodates an exceptional variety of peripheral devices. Connector is optional.
• Includes 1-Kbyte of static RAM.
• Costs only $199.95 with PSYMON™ and comprehensive users manual that includes source listing of PSYMON™.

EXORciser* Bus LFD-400EX™-800EX™ Systems

From Percom . . .

Low Cost Mini-Disk Storage in the Size You Want

Versatile Mother Board, Full-Feature Prototyping Boards

Printed wiring is easily soldered tin-lead plating. Substrates are glass-epoxy. Prototyping cards provide for power regulators and distributed capacitor bypassing, accommodate 14-, 16-, 24- and 40-pin DIP sockets. Prototyping boards include bus connectors, other connectors and sockets are optional.

MOTHERBOARD — accommodates five SS-50 bus cards, and may itself be plugged into an SS-50 bus. Features wide-trace conductors. Price: $21.95

SS-50 BUS CARD — accommodates 34- and 50-pin ribbon connectors on top edge, 10-pin Molex connector on side edge. Price: $24.95.

SS-30 BUS CARD — 1¼-inch higher than SWTP I/O card, accommodates 34-pin ribbon connector and 12-pin Molex connector on top edge. Price: $14.95.

The Electric Window™: Instant, Real-Time Video Display Control

Memory residency and outstanding software control of display format and characters make this SS-50 bus VDC card an exceptional value at only $249.95.

Other features:

• Generates 128 characters, including all ASCII displayable characters plus selected Greek letters and other special symbols.
• Well-formed, easy-to-read 7x12-dot characters. True baseline descenders.
• Character-store (display) memory included on card.
• Provision for optional character generator EPROM for user defined symbols.
• Comprehensive users manual includes source listing of Driver software. Driver — called WINDEX™ — is also available on mini-diskette through the Percom Users Group.

Products are available at Percom dealers nationwide. Call toll-free, 1-800-527-1592, for the address of your nearest dealer, or to order direct.
Once in a great while someone comes along with a simple improvement for an already great product. Take our SuperBrain, for example. Really a simple concept. A high-powered, low cost microcomputer packaged in an attractive desk top cabinet. So how do you improve on that?

WE DID IT...

It wasn't enough that our SuperBrain had such standard features as twin double density 5¼" drives with over 300,000 bytes of disk storage. A full 32K of dynamic RAM expandable to 64K in seconds. A CP/M* Disk Operating System which assures compatibility to literally hundreds of application packages presently available. A crisp, 12" non-glare screen with a full 24 line by 80 column display. A full ASCII keyboard with a separate keypad and individual cursor control keys. Twin RS232C serial ports for fast and easy connection to a modem and/or a printer. And, dual Z80 processors which operate at 4 MHz to insure lightning-fast program execution. No, it wasn't enough. So we made it better.

ANNOUNCING SUPERBRAIN QD...

Our new QD model has all of the features of our phenomenally popular SuperBrain with the addition of double-sided disk drives and an extra 32K of dynamic RAM. So, for only a modest increase in price, you can order your next SuperBrain with more than twice the disk and memory storage capability. But, best of all, the new QD model has the same tough, rugged construction and exceptional quality that made our SuperBrain such a success.

HOW DO WE DO IT?

The secret of SuperBrain QD's incredible disk storage lies within our new double-density double-sided disk drives. A total of nearly 720,000 bytes of data are formatted on two specially designed 5¼" drives. And that's more than enough to get you started with most serious small business applications. And SuperBrain QD's standard 64K of dynamic RAM will handle even the most complicated programming tasks.

Of course, if you're into megabytes instead of kilobytes, you may think neither SuperBrain is right for you. Not so! Intertec offers 20-96 megabytes of hard-disk storage which connects in seconds to either the SuperBrain or SuperBrain QD. So, your original investment is always protected. As you grow. No matter how much your needs expand.

BUT IS IT RELIABLE?

Our best salesmen are our present users. Not only have SuperBrain users been impressed with the inherent reliability of the system, they tell us that no other microcomputer system available today offers such a unique modular design concept. Just about the only tool required to easily maintain the system is a common screwdriver. And Intertec's total commitment to product service and customer support, with service outlets in most major cities, insures your original investment will be a valuable one for many years to come.

THE DECISION IS YOURS.

Whether your next SuperBrain is a regular model or our QD version, you will have the satisfaction of knowing you purchased what is becoming one of the world's most popular microcomputer systems. And regardless of which model you choose, you'll probably never outgrow it because you can keep expanding it.

So, call or write us today for more information. Intertec systems are distributed worldwide and may be available in your area now.

Registered trademark of Digital Research Inc.

INTERTEC DATA SYSTEMS®

2300 Broad River Rd., Columbia, SC 29210
(803) 798-9100 TWX: 810-656-2115
QUALITY
THAT'S WHAT SEPARATES THIS PRINTER FROM THE TOYS

MICROTEK MT-80
SOLID VALUE FOR YOUR DOLLAR

The market is flooded with low-cost printers that look and last more like toys.

The Microtek MT-80, our versatile alphanumeric line printer, has a high quality print mechanism that gives you solid value for your dollar. It has been designed with a superior brain resulting in more advanced features and more dependable performance. Our printer is so reliable that we offer you an incredible 365 days warranty.

We stand behind every printer we make because we build quality into each one. So stop tinkering with toys and get serious. Demand 100% value by specifying the MT-80.

OUR UNIT PRICE
$795 Parallel
$895 Serial (RS-232C)

LOADED WITH INNOVATIONS
- 40, 80 or 120 columns (software selectable)
- Non-thermal paper, pin feed
- 125 CPS, 70 lines per minute
- 9 x 7 dot matrix
- Vertical format unit
- 96-character ASCII (upper and lower case)
- Adjustable forms width to 9½"
- Parallel and serial (RS-232C) interfaces available

For more information contact:
MICROTEK, Inc.,
9514 Chesapeake Drive,
San Diego, CA 92123
Tel. (714) 278-0633
TWX 910-335-1269
ARTICLES

26 The 16-Bit Super Processors Are Here The Sol 20 gets hooked, Frank J. Derfler, Jr.
34 Micro-Matrimony The Sol 20 gets hooked, Frank J. Derfler, Jr.
36 Winning the Micro Game Learn the rules, Don Lancaster
40 Improving the OSI Challenger C2 First of two parts, Ugo V. Re
48 Back-Space Mod For CP/M and Microsoft BASIC. Rod Hallen
52 Level II BASIC on a Z-80 System Using Radio Shack ROMs. Richard J. Uschold
64K Memory for the H8 Last month’s article continues, Myron J. Seibold
76 On Time and Space A savings for North Star users. Dr. David J. Yates
84 Why Do You Need Two Disks? You’ll know after reading this article. James W. Stutsman
88 Disassemble for the Heath H8 Adaptable to other 8080/8085 systems. Patrick Swayne
96 PET I/O Port Expander Part 3 describes joystick interfacing. William F. Pytlik
100 Slaying the 80-Column Dragon Good news for Apple II users. Michael S. Tomczyk
106 Graphics Character Generator Mix text and graphics. Robin B. Moore
119 The SWTP Computer System A look at the HUMBUG monitor. Peter A. Stark
124 Dial-up Directory How to lower your computer phone bill. Frank J. Derfler, Jr.
130 Designing Your Power Supply PET earns its keep. William R. Moore
134 Get Your PET on the IEEE 488 Bus Part 2 examines files. Gregory Yob
136 Some Tips on Program Conversion Using a bookkeeping program. Linda E. Bolland
140 The Telltale UART This should never happen to you. Brian Streeten
155 Q & A on Printers and Terminals What every bargain hunter should know. David Price
158 Integer Choice Game Test your skills against Compupolor. David B. Suits
162 Memory-Checking Program for the 1802 Sniffs out defective chips. John R. Bunn
165 Chaining Data with the Sorcerer Solution to information-savings deficiencies. Charles Dailey
169 A “Personable” Calendar Organize lists with PET. G. R. Boynton
172 Recover That Lost Disk BASIC Program A trick for the TRS-80. Louise H. Frankenberg
176 CP/M is for Me A solution to mass storage. Ken Barber
184 Some Notes on Termination Avoid those frustrating glitches. Reo W. Pratt
188 Fastfind Search large arrays in a hurry. Bill Roch
196 TRSpeed-up Revisited Change speeds on the fly. Roy A. McCoy
198 File Dump for FLEX Know your disk files. Phil Hughes
194 Build a Breakout Box For that extra parallel I/O port. Don Walters
198 BASIC Programming Tips Efficiency and fast program development. Alfred E. Williams
200 Program Patching For I/O flexibility. Ken Barber
204 CT-1024 Terminal Modifications Improve cursor control and add a clock. Fred Cooley

DEPARTMENTS

<table>
<thead>
<tr>
<th>Publisher's Remarks</th>
<th>Computer Clinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Output from Instant Software, Inc.</td>
<td>Letters to the Editor</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Book Reviews</td>
<td>Micro-Scope</td>
</tr>
<tr>
<td>8</td>
<td>208</td>
</tr>
<tr>
<td>New Products</td>
<td>Calendar</td>
</tr>
<tr>
<td>12</td>
<td>210</td>
</tr>
<tr>
<td>New Software</td>
<td>Classifieds</td>
</tr>
<tr>
<td>16</td>
<td>212</td>
</tr>
<tr>
<td>New Publications</td>
<td>Corrections</td>
</tr>
<tr>
<td>17</td>
<td>212</td>
</tr>
<tr>
<td>PET-pourri</td>
<td>Dealer Directory</td>
</tr>
<tr>
<td>20</td>
<td>220</td>
</tr>
</tbody>
</table>

Cover illustration by Dion Owens.
Publisher's Remarks

Keyboarding Economy

The postal service reportedly poured millions of dollars down the tubes trying to invent the uninvetable: a machine for deciphering handwriting. Unquestionably there is a need for this. Most of the data input to computers consists primarily of names, addresses and orders for goods. There seems to be no practical approach to induce people to buy a typewriter with a special ball that can be read by optical character-reading (OCR) systems. The postal service might be able to implement some sort of OCR addressing if they set up a special class of mail with lower rates for letters addressed with a standard OCR.

The answer to speeding up (cutting the cost) of data input for computers lies in some sort of automatic reading of names, addresses and other simple data such as quantity and part number for orders. We already have equipment that reads pencil or pen marks on cards, so that gives us something to work with. Since there are too many ways of writing or printing for a computer to cope with, we are going to have to come up with some simplified coding which our computers can read, but which can be marked with a pen or pencil.

There are about 40 different characters that need to be deciphered (alphabet, numerals, punctuation marks). A system that required you to choose each individual character from a group of 40 boxes, each box representing one character, would be too cumbersome. Since a name and address would have to allow for up to 80 individual characters, a coded card would have to contain 3200 boxes just to cope with the name and address. Something simpler is necessary, and I think I have a solution.

Most of my flashes of intuition come while I am taking a shower. (I've read that this has something to do with the negative ions caused by the stream of water hitting the body. There may be something to this. I don't take long showers, either—though I suppose I should. I've worked my morning shower process into an efficient system: brushing my teeth (yes, in the shower, while the beard is softening), shaving (yes, also in the shower, while the beard is soft and very easy to shave), soaping and rinsing. The whole works takes under ten minutes, including toweling, applying after-shave and antiperspirant and combing what's left of my hair. If I save only ten minutes a day with this routine, it gives me 60 hours a year to do more productive things.)

This time the brainstorm had to do with utilizing the seven-segment LED or LCD character for an OCR system. With seven segments we should be able to represent two characters, or 128. That's plenty for the alphabet, numbers and punctuation.

Should we go to an ASCII-type coding or start over again? Since lookup tables for electronic circuits are so simple, the coding should be easy to read. If we start with the ten numbers, which are all handled easily with the seven-segment system, we are off and running (see Fig. 1). The alphabet is more difficult, but let's look at the letters that are easy to handle first: A, C, E, F, G, H, J, L and P (see Fig. 2).

Some letters, such as a lowercase b and d, can be handled without too much half-size i, o and u finish off the vowels, so they are all readable (see Fig. 3). I tackled the rest of the letters and punctuation, and I came up with Fig. 4.

To see if this was worth the trouble, I tried a few words in this new representational alphabet (see Fig. 5). It's a bit of a strain, but I think that a data-input person could become accustomed to reading this in a day or less.

The end result would be one seven-segment box for each character. A translation for the marks would not take up a lot of room on a coded order card, and the finished product could then be read by machine. This would cut the cost of data entry, and thus make it possible to sell products or subscriptions cheaper. Remember that many data-input systems call for each name and address to be keyboarded a second time for verification, so perhaps you can appreciate the savings.

If those savings are not apparent, then look at it this way. At one minute per order for data entry, plus a second minute for verification of the original data, we're looking at around 14¢ in data-entry costs just for labor. Add the cost of the equipment, worker benefits, heat, light, power, repairs, training and supervision, and you at least double your cost of labor, bringing the data input cost up to 28¢ per order. Wouldn't you like to save 28¢ on every subscription to a magazine you send in ... on every mail order you send in? An outfit that handled 1000 orders a day could save $280 per day by changing to GRC (Green Readable Character) data input. That's over $70,000 a year.

With this GRC system, a mail-order house or subscription agency would only need two data-input people. One person would take a quick look at each data input to make sure it was not screwed up; a second person would input those orders too badly confused for the system. I doubt if this system would put a lot of people out of work. Most data-input departments I've seen are chronically short of people—not many employees enjoy sitting at a tube all day long typing in orders or reader-service requests. This system should also be adaptable to post-office tasks. The first readers would be for
postcard-size cards with an optically readable symbology line for the system to use as a reference to start reading the name, address, city, state, zip and other order information. That machinery would adapt to read addresses on envelopes and automate letter mail.

Light green outlines for the characters could be printed on the envelopes or on the labels to stick on the envelopes. Characters would be marked by pencil or pen over the green guidelines. If the postal office used reader-sorters, they could drop the postage rate to maybe 10¢ for GRC mail, and soon every business in the country would use it, complete with GRC bars for typewriters.

Using the size and spacing of the IBM Selectric typewriter, a complete name and address could fit in an area 2½ inches long by 1 inch high, and that would provide three lines of 25 characters each. A four line address system would be 1½ inches high. That’s within the size requirements for presently used labels, so the system should not be particularly difficult to put into operation.

A character reading system such as this could be adapted to any computer, either by use of a chip with the lookup table in it or a simple lookup software program. An operator watching cards being read would see the characters translated into regular terminal characters rather than seven-segment readouts.

The character reader could either scan a row of characters, reading them sequentially, or have 875 sensing elements to read the four 25-character lines at one time. Another element or two could detect synch indicators. Order-reading systems would probably scan more like bar-code systems.

The standard I have set for the system is ten characters to the inch and a pitch of two points per line (1½ inch). The character blocks are ten point in size and can be approximated by using the IBM #10 Orator ball and typing an E overprinted with an H. This leaves a line beneath each character line for indicating what should be on that line.

Hitachi and Tandy Coming?

There are hints that Hitachi is releasing a new system that could sell well in this country. I understand that it has eight colors and a 640 x 200 resolution. It uses a 6809 processor.

We’re still waiting for the release of the Tandy color system, rumored to be called TRS-90 and use a Z-80. Although Tandy had plans for using the 6809, I suspect that the importance of being able to use the already developed program base had some effect on the decision. One of these days, we’ll see where rumor ends and facts begin.

The first evaluation units of the Hitachi system should arrive in this country by early fall. I think we’re in line to look at a system, so watch for more news.

Winchester Technology

This term is used a lot these days, and I’ll bet that few readers have any idea of its origin. It all started, according to a recent Pertec newsletter, with a 1973 IBM 3340 drive. This new disk development was supposed to be a dual 30 megabyte drive: 30-30. The drives eventually became 35 and then 70 megabytes each, but by then the "Winchester" name had stuck. So much for the history lesson for today.

(continued on page 218)
Program Search

Exidy's acquisition by Recordex should increase demand for program packages for this system. ISI is particularly interested in Exidy-oriented programs for possible publication. If you have both a TRS-80 and an Exidy, you might like to try translating programs from one system to the other—for a royalty on the sales.

North Star is doing well, and ISI has North Star-based program packages well along in development. And needs more. If you have written any good North Star programs, you can help both North Star and yourself by submitting them for possible publication.

It will be quite a while before we have a serious need for Apple II programs, but the ISI programs currently distributed for the Apple are faring well and are a nice source of income for the authors. Now that ISI has a good foundation of TRS-80 programs, more time is being invested in the support of the Apple and other systems, so turn your Apple programming work into royalty income.

We also need a machine-language word processor—particularly for the TRS-80. This would speed up the system and make such a use for the TRS-80 far more practical. How about it, all you machine-language fans?

Translators Needed

Pressure is being put on microcomputer manufacturers to provide software support for their systems: some of the majors are beginning to feel the heat. Dealers are complaining, and even the general-interest magazines are mentioning poor software support. Money magazine quoted Texas Instruments as having plans for only 100 programs by the end of 1981. This tiny number has to put a chill on the whole industry.

It seemed appropriate for Instant Software to help by putting some TI programs on the market. We consulted our associate-editor list to see who had volunteered to make the conversions from the TRS-80 to the TI-99/4. With over 1,000 editors from which to choose, we could find none available for this job!

Readers who want to tackle this should write and give me some idea of their equipment and experience. We have released hundreds of programs for the TRS-80; we want to translate as many as possible for use on the TI-99/4. We understand the problems with the system and the efforts Texas Instruments made to make translations difficult.

Several other firms have shown interest in getting substantial software support, so we may need translators for programs from TRS-80 to Heath, Atari, Apple and a few others. You do the work on your time, at your convenience. If you think you might go for this, drop me a line.

Electronic Design with Off-the-Shader Integrated Circuits

Z. H. Meiksin and Philip C. Thackray
Parker, West Nyack, NY, 1980
Hardbound, 383 pp., $19.95

This cookbook contains the design principles you'll need to exploit low-cost mass-produced integrated circuits and passive support components. An excellent one-stop reference for the computerist who designs his own hardware, the book is for both those who are adding to their systems and those who are full-blowm construction freaks.

The text focuses on practical approaches. It minimizes math and emphasizes a cut-to-fit method that must, in the end, be applied to the most thoroughly planned designs.

For example, the book supplies simplified equations for designing active filters with op amps. It covers first through fourth order, constant ripple, maximally flat and high-Q filters. Even with the simplified tables and equations provided, the authors say, values that result are "of much greater precision than can be obtained with commercial fixed value components." The text then outlines filter tuning procedures.

While most readers will use the sections on digital ICs primarily for reference, topics such as rise time and decay time are presented in an unusually lucid manner. The chapters on analog to digital conversion, linear applications, and nonlinear applications are also thought-provoking. These chapters cover photo sensor amplifiers, four-quadrant multipliers, peak detectors and sample and hold circuits.

The book, unlike any other text I've seen, covers passive components with the same depth it covers active components. These include resistors, capacitors, inductors and transformers.

This information will help you decide what type or composition of capacitor to use or what type of resistor you'll need. The characteristics of each type of part are explained in detail to let you make intelligent decisions.

The authors also discuss techniques for anticipating and eliminating noise problems. Computer buffs will be particularly interested in the chapter on grounding and shielding. A section on eliminating spurious signals in digital circuits includes ways to handle power supply noise, stray field effects, capacitive coupling and signal reflection. The chapter also suggests ways to overcome problems with analog and hybrid digital-analog systems.

The text ends with examples of system design and summarizes considerations that affect the overall performance of a system. The book provides guidelines for choosing the IC functional blocks that best satisfy an application's requirements with the greatest cost-efficiency.

"Pitfalls to Avoid," a feature of each section, has already earned the price of the book for me. It covers common errors in the design approach to applying the particular component. For example, the authors point out a common error in the design of light detector amplifiers and suggest an approach that eliminates the problem and reduces the circuit's part count.

While much of the book's information is
duplicated elsewhere in my library, nowhere is it so conveniently brought together. I think that if you have any experience with building or designing hardware, you’ll find this useful text that is neither too complicated nor too simple.

Gregg W. Squires
Sparkill, NY

Microcomputer Interfacing
Bruce A. Artwick
Prentice-Hall, Englewood Cliffs, NJ
Hardbound, 323 pp., $18.95

The title of this book led me to believe that it would discuss how to attach peripherals or signal conditioners to a functioning computer system. But it instead tackled such topics as construction of microprocessor chips, design rules for microprocessor controllers and construction techniques. Artwick is clearly talking about microprocessor interfacing.

If you’re a hobbyist ready to become an entrepreneur, your first decision will be which microprocessor to choose. Four, eight or 16 bits? Higher speed or lower power? One chooses a design that is directed toward data processing or industrial control? Artwick compares about a dozen different microprocessors. He is uneven, but does touch on the weaknesses and strengths of each. He also includes bitsliced chips and single-board controllers. Novice designers will find this helpful.

Because of its simple explanation of both static and dynamic RAM, the chapter on data storage is the best in the book. Imagine someone boiling down volumes of manufacturers’ literature and making the residue readable. Starting with the old 2102 memory chip and using many simplified block and timing diagrams, he works his way through to the recent dynamic and 16K RAMs. The text answers such questions as “Why do the new dynamic 16K RAMs have fewer address pins than 1K static RAMs?” and “What is the difference between an erasable PROM and an alterable ROM?” It even looks briefly at charge-coupled devices and magnetic bubble memory.

About one quarter of the chapter deals with magnetic recording methods for long-term storage on tape or floppy disks. Hard disk technology is ignored.

The chapter on interfacing components also deserves special mention for its completeness. Any possible way to get information into or out of a computer system is listed. Artwick covers the basics of TTL drivers and receivers and explains the importance of fan-out, what to do about unused gate inputs and how to mix MOS and TTL family chips in the same design. This is followed by the LSI interface circuits, such as programmable peripheral interface chips and CRT controllers.

A good section explains why a synchronous communication interface adapter is more complicated than an asynchronous communication interface adapter. The pages on analog and digital conversion, transducers and other devices contain many practical suggestions and criteria for selection.

Each topic, however, is limited in scope. A section on floppy disk controller chips mentions two that are designed to mate with specific microprocessors but neglects to mention the Western Digital 1790 series, which is manufactured for use with any microprocessor.

The rest of the text is more general. The chapter on input and output methods spends less than a page each on asynchronous serial communications, multiplexing and memory-mapped I/O and doesn’t even include examples. Artwick’s coverage of polling and interrupt-driven I/O is a bit more comprehensive, because he offers suggestions on how to assign interrupt priorities and handle interrupt processing.

Other chapters cover circuit board layout, construction techniques and interfacing to standard microcomputer buses.

Artwick does not include a bibliography. This is unfortunate, since I found many places where I needed more information. The figures are excellent and the majority of the text is very clear. The coverage of future trends in the industry will keep the book current long enough to avoid having to put out a new edition in loose-leaf form.

The overall usefulness of this book would depend on who you are. If you want to design something, Microcomputer Interfacing is just a starting point. It is not a circuit design reference book because not many specific circuits are included.

The book is good for hints, tips and rules. Here are two examples: “One-shot should never be used to drive Set, Clear or Clock inputs of logic devices,” and “Convert analog signals into digital signals as soon as possible.”

I doubt that an inexperienced designer would be able to complete an assignment with just this book, but it should shorten development time. The person who wants to know how microprocessor-based equipment works will be helped the most.

Mike Aronson
Oregon City, OR

Introduction to Computer Programming
Walter S. Brainerd
Charles H. Goldberg
Johnathan L. Gross
Harper and Row, New York, 1979
Hardcover, 534 pp., $16.95

The authors promise a textbook that will give the beginner a solid foundation of programming knowledge. And though the title is a little misleading—the novice will need to know something about programming if he does not have an instructor—the book is one of the best treatments of the art and science of programming I have used.

The authors take a unique approach. They have developed a Beginner’s Programming Language (BPL) that teaches the logic of programming without requiring the reader to master the conventions of a specialized language. The beginner can read and understand a BPL program without any knowledge of the

BPL rules; the language itself carries the structure of its own logic.

The beauty of this approach is the ease with which the student of BPL can transfer his learning to BASIC, FORTRAN, PL/I and COBOL programming. Once the reader adjusts to BPL, the 200 sample programs found in the text are completely understandable.

The book moves from the simple to the complex, using examples and applications every step of the way. For example, a continuing analysis of credit card sorting presents an excellent tutorial of various sorting routines. The authors go through finding the smallest element in a list, sorting by replacement, merging, the bubble sort and, finally, file sorting.

As they present this material, the authors lead the reader through formatting, looping and other standard tools of programming. The beginner learns in a building-block fashion, each bit of knowledge leading to the next.

The beginning programmer should follow the text sequentially. However, a reader with a solid foundation in programming will want to study selected chapters. The 500-plus exercises throughout the book provide a constant source of stimulation and challenge.

James P. Morgan
Scott AFB, IL

NEW RELEASES

Troubleshooting Microprocessors and Digital Logic—Robert L. Goodman. TAB Books, Blue Ridge Summit, PA. $12.95, hardbound ($7.95, paperback).

A Bit of BASIC—Thomas A. Dwyer and Margot Critchfield. Addison-Wesley, Reading, MA. $5.95.

“Percom Sells More Microcomputer Disk Systems Than Any Other Peripherals Manufacturer. I'd like to show you why.”

“Percom has been manufacturing mini-disk storage systems for microcomputers since 1977 when we introduced the 35-track, single-drive LFD-400™. Now we produce 1-, 2- and 3-drive systems in 40- and 77-track versions, a multi-density MEGABASE™ system and a host of accessories and software.

“Volume not only means experience in critical production and testing operations, it also means we can offer superior design features, extra testing and qualified backup support at very competitive prices.

“I know of no other microcomputer disk system manufacturer who even begins to offer the broad spectrum of disk equipment and programs available from Percom.”

“So before you buy a mini-disk system for your 6800, 6809 or TRS-80* computer, take a good look at what the people at Percom have to offer.”

Harold Mauch
President, Percom Data Company
"From an efficient 1K-byte control system DOS to high level languages such as FORTRAN and Pascal, no other microcomputer disk systems manufacturer provides the range and quality of development and application programs available from Percom."

"Connie is running a 'cats eye' test on a mini-disk drive to check radial track alignment. Drive motor-speed timing and sensor alignment tests have already been performed. Disk formatting and format verification tests are next. These measurements are part of the 100% testing every single unit receives."

"Whether you call about a shipping date or ask a tough technical question, you get a competent courteous answer. Outstanding customer service is a hallmark of Percom."

"Richard's making final changes to a disk controller which will allow Percom drives to be used with yet another computer. We're constantly developing and introducing new products that extend and enhance the value of Percom systems."

"Slipping a circuit board through the eye of a needle would be easier than slipping a cold solder joint past Beverly. These are four-drive LFD-400/800 disk system controllers she's inspecting."
NEW PRODUCTS

Apple III

Apple Computer, Inc., 10260 Bandley Drive, Cupertino, CA 95014, has introduced its Apple III computer. Designed for use by professional/managerial personnel, the Apple III features a new Apple-designed central processor, up to 128K bytes of main memory, a built-in disk controller for handling up to four floppy disk drives, a new keyboard design with a 13-key numeric keyboard and an 80-character × 24-line upper/lowercase display. A number of items that were optional on the Apple II have been incorporated as standard equipment in the Apple III. In addition, a special emulation capability lets users convert an Apple III to an Apple II to permit the use of programs developed for the Apple II.

Two new application packages are offered for use on the Apple III: the Information Analyst software, for planning, forecasting, modeling, pricing and costing, scheduling and budgeting, and the Apple III Word Processor software, for preparing memos, letters and general typing, long documents, form letters and legal documents. Apple III prices range from $4340 to $7800. Reader Service number 481.

Dot-Matrix Printer

The Model 460, the newest addition to the Paper Tiger line of dot-matrix printers, features bidirectional print speeds of 160 characters per second and offers correspondence-quality, high-speed printing and high-resolution graphics. It offers a variety of programmable print control functions including proportional character spacing and automatic text justification.

The Model 460 can print in 80-, 96- and 132-column formats. Standard paper-handling features include adjustable pin-feed tractor drives that use a stepper motor to ensure fast, accurate movement of fanfold or roll paper and single- or multi-part forms ranging from 1.75 to 10 inches wide. A standard 2K byte buffer allows acceptance of the entire contents of a full 1920-character CRT screen. The unit has a standard RS-232C serial interface as well as a Centronics-compatible parallel interface. Serial transmission rates from 110 to 9600 baud are switch-selectable. Price is $1295. Integral Data Systems, Inc., 14 Tech Circle, Natick, MA 01760. Reader Service number 477.

TR-80-Compatible Computer

Personal Micro Computers, Inc., 475 Ellis St., Mt. View, CA 94043, has introduced a new computer that is hardware- and software-compatible with the TRS-80. The PMC-80 features a cassette tape recorder, 16K memory, Level II Microsoft BASIC interpreter in ROM, power supply and keyboard in one cabinet. It will display on either a TV monitor or on a standard TV set using a built-in VHF channel 3 modulator.

All software available for the TRS-80 will operate in the PMC-80. All peripherals designed for the Radio Shack parallel port will interface to the PMC-80 50-pin bus through a 40-pin interface adapter available from PMC. Disk-based programs can be run on the PMC-80 using the Radio Shack Expansion Interface, or equivalent, which makes peripherals designed for the TRS-80 (such as Winchester disks, speech recognition, printers or RS-232 adapters) compatible with the PMC-80. Price is about $200 less than a comparably equipped TRS-80. Reader Service number 476.

Hardware Debug Aid

New Technologies Co., PO Box 32, Streamwood, IL 60103, now offers an inexpensive al-
ternative to logic analyzers and logic probes in troubleshooting micros. The Hardware Debug Aid (HDA) is an S-100 board that provides sync pulses for oscilloscope use in troubleshooting specific instructions. Or, you can disconnect the address bus to sync any combination of up to 17 signals by using jumpers. The sync pulse is also used to latch and display the status of up to eight TTL-level signals. Price is $99.95 ($84.95, kit). Reader Service number 473.

RS-232 Storage Device

The Micro-Sponge is a mass storage device that is jumper selectable for 300, 1200, 9600 and 76.8K baud and stores a maximum of 80K bytes on a 75-foot Exatron Stringy Floppy wafer. The unit plugs into any computer system that has an RS-232 port. Wafers come in five-foot increments of tape length from a minimum of five feet to a maximum of 75 feet, and each five-foot length of tape stores 5.3K of RS-232 formatted data.

The Micro-Sponge features four basic commands: Read, Write, Go to Beginning of Tape and Space File Forward. The Sponge buffers up to 1000 bytes of data in internal RAM before writing out to the wafer and requires 4.5 seconds to transfer 5.3K bytes at 9600 baud—24 seconds maximum to find the beginning of tape in an average length wafer. Price is $349.50.

Exatron, 181 Commercial St., Sunnyvale, CA 94086. Reader Service number 471.

Variable Speed/Dot Density Printer

The Slimline SLG is a new graphics printer that provides a choice of two-speed/two-dot-density printing for alphanumerics. It will print routine reports at 400 lpm with a low-density pattern (7 x 5 and 7 x 6 matrices) and then switch to a high-density pattern (7 x 9 and 7 x 12 matrices) to print correspondence at 120 lpm.

In graphics mode, it provides a dot density of 100 x 100 dots per inch at a plotting speed of 12 inches per minute. It will reproduce anything that can be displayed on a CRT screen, including graphics, maps, bar charts and labels, as well as such foreign language characters as Arabic, Chinese and Farsi. It is available with Printronix-, Centronics- and Dataprod substitutable parallel interfaces and with a microprocessor-controlled RS-232 serial interface.

OkiData Corporation, 111 Gaither Dr., Mount Laurel, NJ 08054. Reader Service number 475.

H89 Disk Accessory

The H77 is a new floppy disk accessory for the H89 all-in-one computer. The H89 can accommodate up to three floppy disk drives with the H77. You can run operating system and program disks at the same time for fast and efficient access to programs and data.

Based on the H7 Floppy Disk System, the H77 uses standard 5.25-inch, hard-sectored 40-track diskettes, each of which is capable of storing 100K bytes of data. It uses the Siemens 82 disk drive system, which provides reliable high-speed access to data. Random sector access time is less than 250 milliseconds. The H77 ($395) includes one disk drive. A diskette storage accessory, which fits into the space reserved for the second drive, is also included. The H17-1 ($325) is available to provide two-drive capability for the H77, giving the H89 a total of three drives including the drive built into the computer itself.

Single Board Computer

The ZCB single board computer, designed to function as the center of a unique approach to system design, is aimed at system integrators as well as the industrial process control and scientific markets. It generates all standard S-100 bus signals, including emulation of an 8080 CPU, and contains a Z-80-A operating at 4 MHz, 1K of high-speed static RAM memory, three sockets for up to 12K of PROM, one serial port and three 8-bit programmable parallel ports. Circuitry is provided to support static or dynamic memories. Use of 2708, 2716 or 2732 PROMs is jumper selectable, and the addressing of the PROM and RAM is completely variable. Use of wait states on bus cycle and/or in-

H77 Floppy Disk System.
struction fetch cycle is also jumper selected. The serial port makes use of the Intel 8251 USART, which enables software to control the format of the transmitted data and to vary the mode of transmission. A DIP switch specifies the basic rate, between 110 and 9600 baud. The parallel ports use the Intel 8255, which allows the same lines to be used for input and output, under program control, and allows flexibility in assigning lines to I/O addresses, also under program control. Price is $395.

Microcomputer Down Loader

Wintek's new Down Loader allows you to automatically down-load programs developed on the Sprint 68 microcomputer to a target computer for final debugging in their true operating environment. The system consists of a switched RS-232 cable assembly and associated software on diskette. Price is $149.

Wintek Corp., 1801 South St., Lafayette, IN 47904. Reader Service number 470.

Wire-Wrapping Tools

OK Machine and Tool Corp., 3455 Conner St., Bronx, NY 10475, announces several new tools and parts for prototype and hobby applications. The WK-4B wire-wrapping kit includes a universal PC board, an edge connector with wire-wrapping terminals, two industrial-quality 14-pin wire-wrapping DIP sockets, two 16-pin sockets, a DIP inserter/extractor, a wire dispenser with 50 ft. of wire and a cutting and stripping mechanism to prepare the wire for wire-wrapping or soldering and a new combination tool that wraps and unwraps 30 AWG wire on .025 square pins, plus strips 30 AWG wire using a convenient built-in stripper. Price is $25.99. Reader Service number 485.

Word Processor/Computer

Superstar is a word processor/small-business computer that consists of ITI’s Superbrain by Intertec, the NEC Spinwriter and MicroPro’s WordStar word-processing software. This combination features word wrapping, dynamic pagination, two double-density 5½-inch floppy disk drives, 64K bytes of user-programmable RAM and printing at 55 cps. Price is $7500. Software necessary to handle a company payroll of up to 75 people, general ledgers, accounts receivable and inventory is available for $2500. Information Technology, Inc., 56 Kearney Rd., Needham, MA 02194. Reader Service number 469.

Typewriter Interface

Now you can turn your electric typewriter into a hard-copy printer with the I/O Pak from Rochester Data, Inc., 3100 Monroe Ave., Rochester, NY 14618. This typewriter interface exploits the high quality and full upper and lowercase characters of electric typewriters, permitting users of small computer systems to expand those systems into applications demanding high-quality text, such as word processing.

The I/O Pak, consisting of an array of coils positioned in the same pattern as the typewriter’s keyboard, fits directly over the keyboard. These coils are wired into an electrical decoding matrix. The unit is designed to operate on voltages available from standard computers; no modification to the typewriter is required. All adjustments to compensate for different
key heights are incorporated in the I/O Pak. Interfaces and software are available for the TRS-80, Level I and II, and the Apple II. A 6-bit parallel interface for general operation with other computers is also available. Price is $499. Reader Service number 479.

TRS-80/H14 Interface

Now you can interface your TRS-80 and the Heath H14 Serial Printer without having to load a software driver into memory each time the computer is powered up. The PTS-3 interface plugs into the parallel printer port of the Radio Shack Expansion Interface, and the H14 connects to the DB-25S connector of the PTS-3. The H14 baud rate switches are set for operation at 4800 baud. All handshaking and printer status signals are supported with this interface.

Once the PTS-3 is installed, the TRS-80 "thinks" it is connected to a Centronics-parallel-type printer. Compatibility is extended to support all printer commands whether at the BASIC level or machine-language level.

The PTS-4 interface can be used with the PTS-3 in systems that do not include the Radio Shack Expansion Interface. The PTS-4 simply connects to the 40-pin card edge located on the rear of the TRS-80 keyboard. The PTS-3 can then be connected to the PTS-4 to obtain printer operation, just as if an Expansion Interface were being used. The PTS-3 and PTS-4 each cost $69.95, plus $3.50, shipping and handling.

Multi Media Systems, PO Box 41084, Indianapolis, IN 46241. Reader Service number 478.

Britain's S-100 Microcomputer

The Tuscan S-100 is a newly designed Z-80 single board computer that is based on the S-100 bus. Billed as the first British S-100-based microcomputer, it utilizes widely available S-100 extension cards and comes with five S-100 cards laid flat on one board. It features versatile I/O capability with immediate expansion possibilities, including a disk-based CP/M system, high-resolution graphics and speech synthesis. Packaged in a professional case with integral disk drives, the unit is available in all options as a kit or fully assembled and tested.

Transam, 12 Chapel St., London, England NW1 5DH. Reader Service number 484.

H8 Prototype Board

The HKB-I prototype board for the H8 bus, designed for ease of external cable connection, is a full-sized FR-4 board with heat sink/ mounting brackets, bus connectors and a polarizing key. It uses .042 inch diameter plated-through holes on .1 inch centers for use with wire-wrap pins or direct solder connections. It features a hole pattern with interlaced power and ground traces with built-in jumper locations available. Price is $46, kit.

Mullen Computer Products, Inc., Box 6214, Hayward, CA 94545. Reader Service number 482.

Power Control Console

Spike-Spiker is a computer power control console that makes it convenient to plug all your computer equipment into one unit and switch the equipment on and off in the required sequential order. It eliminates constant plugging and unplugging of power cords. It also protects your computer from power line transients with an absorber and provides rf hash filtering between the computer and motorized equipment. The console has eight individually switched 120 V ac outlets divided into two separate filtered circuits, main on/off switch, fuse and indicator light. Price is $44.95.

Kalglo Electronics Company, Inc., Colony Drive Industrial Park, Box 2062, Bethlehem, PA 1801. Reader Service number 472.

TRS-80 Power Control Interface

The Black Box Energizer plugs into any Level I TRS-80 to control up to 256 separate appliances and lamps. A built-in timer measures time from seconds to days, with 1/60 second accuracy. Lamps can be dimmed and brightened under full program control. An exclusive fast-control mode is provided for special applications such as lighting displays. It is also suitable for industrial applications such as automatic irrigation, solar energy, security systems and manufacturing control.

This power control interface works with any appliance or lamp control module manufactured by BSR and sold separately by Sears and Radio Shack. It broadcasts control signals directly over your home's electrical wiring. A complete system requires only the energizer and one or more power control modules (sold separately). Price is $49.95.

The Black Box Energizer from Oasis Systems.
Computer Bismarck

Computer Bismarck is a simulation game modeled after the confrontation between the British and the German naval units at the outset of World War II. It transforms the simple Battleship game into a game of advanced strategy and planning. The setup has been maximized, and skill, cunning and planning are the critical factors. I received two versions of the program for review: Apple disk and TRS-80 cassette.

The Apple disk is more entertaining because of its use of color graphics and the quick access to disk data that allows for faster play between the different program elements. The program consists of the setup, main program and combat program. The disk uses a single data file for all three parts and has auto load linking between the program elements.

The TRS-80 cassette version contains both 16K and 32K Level II. The 16K version is cumbersome to use. The setup program produces a data file on tape that has to be read by the main program for play to begin. Before engaging in battle, you must make a data file tape which is read by the combat program. Due to memory restrictions, each program section has to be loaded separately and run individually. The 32K version has the main and combat program elements combined, so it will play much easier and quicker than the 16K version. I would like to see a 48K disk version for the TRS-80. Apple disk version is $59.95; TRS-80 cassette version is $49.95.

Ed Umlor
Technical Dept., ISI

COBOL-80 Compiler

Microsoft, 10800 NE 8th, Suite 819, Bellevue, WA 98004, announces version 4.0 of its COBOL-80 compiler for 8080-, 8085- and Z-80-based microcomputers. New features include: full-screen interactive Accept/Display and Screen Section compatible with Data General Interactive COBOL, Chain with argument passing and Segmentation to ANSI standard Level I. This new version exceeds ANSI-74 requirements with full implementation of Level I, as well as many Level II features. COBOL-80's advanced features—full Copy facility, trace style debugging and ASCII, packed and binary data formats—maximize microcomputer utility. It supports all existing versions of CP/M, including 1.3, 1.4 and 2.X for files up to 8 megabytes. It runs under CP/M, ISIS-II, IMDOS, CDOS, TEI's TDOS and Model II TRSDOS operating systems; it can be easily adapted to other operating systems. Price is $750; documentation may be purchased separately for $20. Reader Service number 486.

TRS-80 Software

Simulation Software, PO Box 1368, Warren, MI 48090, announces the release of two programs for TRS-80S equipped with Level I BASIC and 16K RAM.

Dungeon Explorer 2.0 is a single-player game of combat and adventure in which a player tries to become a superhero by battling monsters within the Dungeon of Xanadu. This revised version features a streamlined game command input routine (using INKEY$), improved combat sequences, additional monsters and mapping graphics. No two trips into the dungeon are quite the same.

Cosmic Trader is a multiplayer game of interstellar trade. Up to four people try to amass a fortune by commanding their own star freighter in a quadrant consisting of nine star systems with nine categories of trade goods. Players must negotiate all transactions with alien merchants (the computer). Players must cope with sudden changes in the marketplace and in market prices. The user can adjust the game length.

Both programs are on cassette and come with complete instructions for $12.95, plus $1 per order for shipping. Reader Service number 487.

Nutritional Software

Nutri-Pack is a series of programs and a data base for the Apple II to help you evaluate the nutritional quality of your daily diet. The programs allow you to quickly retrieve information from, modify and add to a data base containing over 600 different foods. The data base contains information on the caloric, fat and protein content and the levels of eight vitamins and minerals in the listed foods. Price for the disk version is $39.95.

Micro-Comp, Inc., 1525 NW Circle Blvd., Corvallis, OR 97330. Reader Service number 490.

Adventure Game

Dungeons is a fantasy adventure for the OSI computer in which the player assumes the role of a fighter, dwarf, halfling, elf or magic-user in search of gold in the unexplored dungeons beneath the wizard's city or in the forest that surrounds the city. Evil monsters lurk in the forest and dungeons to guard the gold. It is based on the Dungeons and Dragons game. The adventure is graphically displayed for the C1, 2, 4 and 8P. Price is $12.95 for the cassette and $15.95 for 5¼ or 8 inch disk. Both versions require 8K.

Aurora Software Associates, 353 S. 100 E., #6, Springville, UT 84663. Reader Service number 486.

For Dentists Only

Graham-Dorian Software Systems, Inc., 211 N. Broadway, Wichita, KS 67202, introduces a computer software dental package written and tested by dental professionals. It handles patient records of charges, payments, insurance, delinquent accounts and daily and monthly transactions. It prints out patient statements and standard insurance forms for the American Dental Association (ADA).

The package can be ordered on standard 8 inch disk or various mini-floppy disks. Each package includes the software in INT and BAS file form plus a user's manual and hard-copy source listing for easy customizing. The package utilizes a two-disk storage system. Reader Service number 491.

Inventory Program

Micro Business World, 15818 Hawthorne Blvd., Lawndale, CA 90260, announces the Inventory Control System for the Apple II. The program will handle up to 8100 items and contains a transaction register, fast data retrieval and audit trails. It will generate inventory status reports, reorder reports and keep track of purchase orders automatically. It may be used in a retail or wholesale environment and will handle multiple departments or divisions. Minimum hardware requirements are an Apple II Plus with 48K, one disk drive and an 80-column printer. Price is $99. Reader Service number 492.

DBMS Business Program

Info/80 is a data base management system (DBMS) that runs under the CP/M operating system by Digital Research and utilizes Microsoft's Compiled (C-80) BASIC. This product features an effective and user-oriented method
of maintaining bookkeeping, recordkeeping and management information systems tailored for individual businesses. It is operational on various disk devices ranging from 8 inch diskette to multi-megabyte hard disk with the size of the data base the controlling parameter. Thus, it can manage both a small limited application and a complete multi-application for a full on-line integrated business system.

Data Train, Inc., 840 NW 6th St., Suite 3, Grants Pass, OR 97526. Reader Service number 493.

Business Software

L216 is a business software package for TRS-80 systems with 16k memory and Level II BASIC. It consists of the following programs: a cassette data base manager, a word processor, an inventory control system, a stock management program, a label printer, a deposit calculator and a statistics program. It also features a sort utility and a key access utility, which can be included as part of the user’s program. Price is $59.

OSI Compiler

XPLO is a block-structured, high-level compiler language for Ohio Scientific computers. This new programming language includes a self-contained editor and run-time interpreter. The editor allows easy source code creation and editing, and the interpreter makes XPLO programs transportable to any computer that has the interpreter written for it. Also, the block structure allows the creation of easy-to-understand, self-documenting code.

The diskette package ($79) comes complete with utility programs: DIRECTory, CREATE and DELETE, all written in XPLO. The diskette also has some sample programs in XPLO. The cassette version costs $75. The 34-page manual, which may be purchased separately for $9.95, has sample programs, tips and a section on using the editor.

Pegasus Software, PO Box 10014, Honolulu, HI 96816. Reader Service number 495.

AppleRoots

AppleRoots is a combination genealogy/animal breeding program that has 17 user-definable fields to specify the title and length of the field. The program will default to 17 titled fields. Functions include: configure system, enter records, change records, delete records, print index or records, print list of children, print family records and print four-generation pedigree chart. All printer functions can be displayed on the screen or sent to the printer. All functions are menu-oriented; no programming is required to custom-configure the system for your personal use. It is written in Applesoft and requires a single disk drive with 24K RAM. Price is $39.95.

CDS Corp., 695 East 10th North, Logan, UT 84321. Reader Service number 498.

BASIC-FORTRAN Translator

Now you can convert software written for DEC, IBM and any other ANSI standard FORTRAN system into microcomputer-compatible BASIC with Convert, a software package for translating programs in BASIC to FORTRAN and programs in FORTRAN to BASIC.

Convert allows special BASIC command definition and FORTRAN device number specification to ensure accurate translation between any microcomputer and FORTRAN system. This translator is available in either the version I source code written in BASIC or the version II source code in FORTRAN. Both versions will operate on all popular computers with either a BASIC or FORTRAN compiler, respectively, and a minimum of 8K. The program is supplied on cassette for Ohio Scientific and TRS-80 and on floppy disk for Alpha Micro. A tape is also available for DEC, Prime or IBM systems. Price is $115.

Cognitive Electronics Laboratory, PO Box 615, New Braunfels, TX 78130. Reader Service number 497.

Pinball Game

Pinball is an arcade game written in machine language for the Radio Shack Model I Level II TRS-80. The screen displays flippers, bumpers, rollovers, runs and bonus points. The space bar on the TRS-80 releases the ball at various speeds under player control. Ball speed and acceleration depend on the contact with various features on the board, including the mysterious "Bermuda Square." Price is $14.95 on cassette or $20.95 on disk.

MDBS Software

Micro Data Base Systems, Inc., PO Box 248, Lafayette, IN 47902, has recently released version 1.03 of its network data base management system (MDBS) designed to run on Z-80, 8080, 8086 and 6502 processors. The current version requires about 16K on Z-80 machines. MDBS furnishes a collection of different, relatively simple commands. The task performed by each command is identified in the command’s mnemonic. You are not restricted to getting, modifying and deleting data for the current record of the run-unit only. The design of MDBS allows you to write and execute application programs without having previously defined subroutines for them. The MDBS-Z-80 costs $750; prices for other processors are higher. Reader Service number 499.

NEW PUBLICATIONS

Challenger III Service Manual—handbook containing fold-out schematic diagrams, pictorial diagrams, block diagrams, parts lists, memory maps, board placement diagrams and component pin-outs for the 13 circuit boards used in OSI’s business computer systems.

Ohio Scientific, 1333 Chillicothe Rd., Aurora, OH 44202.

The Phoenix Group, 1425 West 12th Place, Tempe, AZ 85281.

Heathkit Spring Catalog—free 104-page catalog that contains descriptions of nearly 400 different electronic kits for home or business.

Micro Media Magazine—floperry-based bimonthly publication that features software, reviews, graphic art, advertisements and articles for the Heath H8, H88 and H89 and the Zenith Z89. Available in both Benton Harbor and Microsoft, as well as in either HDOS or CP/M disk format.

Micro Media Magazine, 1316 Elmhurst Dr., Garland, TX 75041.

Computers in Psychiatry/Psychology—bimonthly newsletter for professionals interested in the use of computers in psychiatry and clinical psychology.

Computers in Psychiatry/Psychology, 26 Trumbull Street, New Haven, CT 06511.

Data Bits—monthly newsletter that coordinates worldwide the data and automation efforts of health planners within the 205 health systems agencies and 51 state health planning and development agencies.

Hapenny Associates, PO Box 1076, Columbia, MD 21044.

Software Vendor Directory—listing of over 700 vendors within 35 categories of hardware and operating systems.

Micro-Serve, Inc., PO Box 482, Nyack, NY 10960.

Archer Engineer’s Notebook—handbook of 415 electronic circuits for electronics hobbyists, experimenters, technicians and engineers.

Radio Shack, 1300 One Tandy Center, Fort Worth, TX 76102.

Nibble—magazine published eight times a year that focuses on the Apple II and Apple II Plus computers.

Micro-Spare, Inc., PO Box 325, Lincoln, MA 01773.

All About Personal Computers—report that traces the development of the personal computer, discusses applications and future trends and outlines how to buy a computer.

Datapro Research Corporation, 1805 Underwood Blvd., Delran, NJ 08075.
LOOKING FOR TRS-80 BUSINESS SOFTWARE? WE HAVE HUNDREDS OF QUALITY BUSINESS PROGRAMS IN STOCK! AT PRICES YOU CAN AFFORD.

WHERE YOUR TRS-80 MEANS BUSINESS

For the first time you can fill most of your software needs with one telephone call. Whether you are trying to find a specific program, custom software or just help with your system—give us a call. We have the people that count!

Invoicing • Inventory Control • Accounts Payable • Accounts Receivable • Payroll • General Ledger • Letter Writer • Word Processing • Mailing • Manufacturing Inventory • Cost Accounting • Sales Reporting • Stock Market • Business Statistics • Statistical Analysis • Data Base Systems • Medical Billing • Dental Billing • Special Industries • Advanced Accounting • Income Tax • Language • Personal Finance • Technical Programs • Insurance • CPA • Law Office • Asset Depreciation • Job Cost • Utility Programs • Education • Games • Home Programs • Loans • Credit Bureau • Electronics • Test Systems • Sports • Art • DOS Systems • BASIC lessons • and hundreds more!

Send for our free catalog or give us a call today. We also do custom programs as well as buy top quality programs.

Summer Special: Complete business system $299.95
OVER 100 OF THE BEST BUSINESS PROGRAMS FOR THE TRS-80* MODEL I AND MODEL II IN STOCK READY FOR IMMEDIATE DELIVERY.

LET US ANSWER YOUR QUESTIONS TODAY.

Software-Mart

24092 Pandora St • El Toro CA 92630

(714) 768-7818

24 Hour Service

OUR BEST ADS ARE NOT WRITTEN — THEY’RE RUNNING ON TRS-80’S

*TRS-80 is a trademark of the Radio Shack Division of Tandy Corporation.
Carl Moser of Winston-Salem, NC, was the first to provide a comprehensive machine language assembler for the PET and other 6502-based systems. The assembler program itself was written entirely in machine language and ran much faster than other assemblers written in BASIC.

The program was not very well publicized or advertised, so it was required at least 16K of memory and was not practical on an 8K PET. But Moser has teamed up with J. R. Hall and formed Eastern House Software (EHS) of 3237 Linda Drive, Winston-Salem, NC 27106. They are now advertising several products for the 6502 microcomputer market, primarily for the PET.

Their most interesting product is the EHS macro assembler/text editor package for the 32K PET with a 2040 disk drive. This package is similar to the older assembler, but is now greatly enhanced with the exclusive use of disk files. EHS appears to be the most powerful 6502 assembler and text editor package on the market.

The EHS assembler (EHS ASSEMBLER) and text editor (EHS ENDER), which reside simultaneously in 10K bytes of memory (5000-77FF hex). In addition to the 10K for EHS, sufficient memory must be allocated for label and text files, which normally take up locations 1800-2FFC and 3000-4FFC hex respectively. These boundaries leave memory for an extended monitor at 1000-17FF hex, for DOS support (segment) in upper memory, and for BASIC and machine language programs at 0400-1000 hex.

The label and text files are position-independent and may be located almost anywhere in RAM memory. In addition, records within these files are variable in length and directly dependent on the number of characters to be stored. This results in more efficient memory use.

The TED occupies about one-half the memory space. It sets up and maintains the source file by interacting with the user via 27 commands (Table 1). When inputting to the TED, you have the full capabilities of the built-in cursor-oriented screen editor, and can automatically repeat any key held for a half-second or more. Source files are created and edited much like BASIC programs are normally handled by the PET operating system, so it is very easy to get used to.

The assembler scans the source program in the text file and creates a label file (or symbol table) on the first pass. An optional listing is generated during the second pass, and a relocatable object file can be generated by a third pass. The relocatable object file is recorded on disk and, with a separate relocating loader program, can be relocated almost anywhere in memory.

The loader can relocate your program in three segments: page zero variables, absolute variables and program body. When not generating relocatable object, the assembler can store the executable object code directly into memory. The code can even be stored at a different address from its execution address. This can be useful if you want to execute in memory space occupied by EHS or any of its work files.

The assembler source statements consist of a required line number, along with standard label, mnemonic, operand and comment fields, in a free format. That is, each field need not start in a specific column or character position. Labels can be up to 31 characters long while standard 6502 mnemonics and addressing mode formats are used. Symbolic, decimal, hex, binary and ASCII values can be entered and expressions can contain addition or subtraction operators. There is even a way to obtain just the high or low part of an address.

The conditional assembly features direct the assembler to conditionally assemble certain portions of your program and skip other portions. The macro facilities are extensive, with non-repeating labels, nested macros and conditional assembly within macros. Table 2 lists the standard assembler pseudo ops.

Source for a large program can be divided into several modules, each entered into the text file one at a time and recorded on disk. These modules can then be linked during assembly via a control file, which specifies the order the modules are assembled in. At assembly, the assembler will load and assemble each module until the entire program is done.

The EHS assembler also provides a unique interactive assembly mode. The assembler can print messages and/or accept keyboard input during the first pass of the assembly. This provides many possibilities, such as specifying the actual assembly start address when the assembly begins.

For program debug, an extended monitor is included in the EHS package. This program is a 2K extension of the PET monitor that occupies locations 1000-17FFF hex. A BASIC program on the EHS diskette provides an interactive review of the extended monitor commands and instructions on how it can be relocated to another area of memory. The extended monitor provides commands for dis-
assembly, enable/undo stop key, fill memory, hunt memory, interrogate memory, quick trace, memory transfer, walk code and others.

In four weeks of testing, I found the MAE package to be well documented, and I had no problems learning to use the text editor and assembler. The assembler was fast and program debugging went quickly. The ability to assemble and debug a program with everything resident in memory greatly reduced normal program debugging time.

This package should be indispensable if you are doing any amount of machine language programming, but the price ($169.95) may be a little steep for a home system. The package includes an excellent 44-page manual, which has clear instructions and many examples. It even includes a sample program to help clear up several areas.

The programs are distributed on a 2040 compatible floppy diskette with the following files:

- DOS support (wedge),
- Extended monitor object code,
- Extended monitor instructions,
- MAE object code,
- Relocating loader object code,
- Relocating loader relocatable object code,
- Library of PET RAM locations for the 32K PET in a MAE source file,
- Notes pertaining to MAE and

- Example program (UART driver).

By the way, another interesting product advertised by EHS is their PET RABBIT program. This is a 2K machine language program that allows loading an 8K program from tape in just 38 seconds. It also provides a RAM memory test, a keyboard auto repeat feature and several other commands. It costs $29.95.

A number of versions are available for each machine, depending on the desired code location. Contact EHS for more information on this and other products.

COMPUTER CLINIC

I am the proud owner of an 8K PET with upgraded ROMs and a Betsy waiting to be brought on-line. I am an analyst-programmer for the Australian government, so my background is in programming. I am interested in corresponding via programs or letters with any interested persons.

David Jones
34 De Graaf St.
Holder Australian Capital Territory 2611
Australia

Does anyone out there recognize any of the following computer circuit cards? These are all hamfest specials bought to build a cheap computer. Any photocopies of condensed manuals or schematics would be appreciated. Will pay for the favor. I've included all identification I could find.

1. Data media 8080A CPU card. 2DAA005, 9.36 MHz, xtal, dated April 21, 1978, 21201. Two empty 2101 slots, about 50 TTL, two Z8 pin sockets, all chips TI, 100 pin edge connector (not S-100). (Got two for $5 each.) Maybe goes to a Datamedia smart terminal.

2. Small unknown 6503 card. TC1-1 logo. 6503, 6530, 6532 chips, 3.579 xtal, 36 pin connector on one side, 38 pin connector on other side, paper tag says P/A model up7-1, Rev. C C11-80139 on card. (Paid $25.) Maybe a video processor?

3. Big Univac memory card. ID numbers 7318-2-73 (1973), 38-75, BE-3, Assy. 4161700-05. Seventy-two Intel 4915636 MOS, 7720A chips (18 pin, 256x4 RAMs?), two 100-pin connectors on one side.

3534009.01 Rev. G 127 stamped on other edge connector (Paid $5.)

4. Small RAM cards. Told they go to "Accukeyser," memory board 1769-25" stamp. Twenty-four Intel C1101A 256x1 RAMs, 2Kx3, 44-pin connector. (Got four for $2.50 each.)

Charles Gerbino
1831 Stanley Place
Falls Church, VA 22043

The Psychology Department at the University of North Carolina at Chapel Hill is currently in the planning stages of a computer based "lab" system for undergraduates. We chose the Apple microcomputer and decided upon Pascal as the programming language. We would appreciate hearing of any applicable software that is available.

R. F. Genovese
Dept. of Psychology
The University of North Carolina at Chapel Hill
Davie Hall 013 A
Chapel Hill, NC 27514

I am willing, even anxious, to open my Tektronix 4051 computer. Can anyone supply references and product names on how to modify this system and/or adapt other 6800 products to it?

Dr. George E. Sinclair
1985 Devonshire Drive
Sierra Vista, AZ 85635
Two comments on W. A. Harrison’s article, “Programming Optimization Techniques” (May 1980)

For shame! The very first rule in optimizing the performance of a program is to fully understand the environment in which the program is to execute. This means a rather detailed understanding of object code produced by your compiler, or the functional characteristics of your interpreter, and a detailed understanding of the instruction set and instruction timings of your processor.

Mr. Harrison’s remarks may have held true on the system with which he is working, but to take them as his own is sheer presumptuous abuse of his readers. I imagine that Mr. Harrison was working with a compiler, if he tested his examples at all.

I suspect that most of his remarks would be appropriate in that environment, but I am sure that 99 percent of your readers are using an interpreted BASIC, rather than a compiled BASIC.

Getting down to brass tacks, in Example 8, three ways of skinning a cat are shown, marked “inefficient,” “more efficient” and “most efficient.” I have implemented these three approaches in Listings 1, 2 and 3, respectively.

The execution times (on a TRS-80 model II) were 65 seconds, 68 seconds and 72 seconds, respectively, exactly the opposite of what Mr. Harrison would lead you to believe.

Generally, with an interpreter, it is preferable to reference an initialized variable rather than a constant. This process of fetching the value of a known variable is quicker than evaluating the literal. The failure of the “most efficient” example is simply based on the fact that the overhead of interpreting an extra statement for the temporary variable costs far more than the referenced references.

I have seen many instances where a young programmer will go to great pains to optimize the efficiency of a program he is coding, only to be shot down because he doesn’t really understand what is happening at the next level down.

I welcome technical articles on programming techniques, but please try to improve the level of applicability to the real world as opposed to painting towers an ivory color.

Robert Snapp
President
Snapp, Inc.
Cincinnati, OH

“Programming Optimization Techniques” was well-written and accurate with one glaring exception. Harrison noted that “access speed” can be increased by using a constant as a subscript rather than a variable (i.e., V(7) instead of V(K)).

On any computer with BASIC language, at least those which utilize interpreters rather than compilers, the opposite is true. A variable subscript results in significantly faster operation time than a constant. This is because it takes the computer longer to convert a constant into its binary floating-point equivalent than it takes to look up and retrieve a variable value.

Examples of the time difference are displayed on the printout from our Commodore PET computer running routines using variable subscripts versus constants (Listing 4). I verified the same time savings with a similar routine on a Data General minicomputer with time-sharing BASIC. I’ve found one of the keys to swift program operation to be the liberal use of variables in any application where the value is referenced repeatedly.

Steven G. Spearman
Hastings, NE

Harrison replies to criticisms

I enjoyed reading Mr. Snapp’s letter immensely. As to his first remark, he is correct! When attempting to facilitate machine dependent optimizations upon programs, you should be familiar both with your machine and your translator, be it a compiler, an interpreter or an undergraduate research assistant toggling 0’s and 1’s into the front panel of your machine. My purpose in writing “Programming Optimization Techniques” was to present a number of commonly used machine independent optimization techniques.

Mr. Snapp’s remarks about compilers vs interpreters were noted, and I agree with him on
that point. As he has shown, the use of a constant as a subscript is not more efficient than using a variable. However, when using a compiler (there's a rumor afoot here at the "tower" that there actually is a compiler or two available for the micron), the use of a constant as a subscript can result in a substantial improvement in performance. This is because the address of the array element can be computed and inserted at compile time. Because of this, a reference to the array element at execution time would be similar to a reference to a scalar.

On the other hand, if you use a variable as a subscript, the machine must constantly (or perhaps un-constantly?) compute the location of the element at execution time. I realize that this is dependent upon the use of a compiler, yet if Mr. Snapp's arguments were to be touted as "universal truths" the readers with compilers would be misled in a similar manner.

As for Mr. Snapp's Listing 3, it is rather obvious why it ran slower than either of the others. The very first point that I attempted to make in "Programming Optimization Techniques" was that invariant calculations should be put outside the loop (see Example 1). Therefore, if Mr. Snapp were to move line 1075, I'm quite sure that he would notice a substantial improvement in performance. After all, 9,999 needless evaluations of $T = C(75)$ can be time-consuming.

As for "ivory-tower" thought, I'm afraid that it would be a bit presumptuous of me to consider "Programming Optimization Techniques" an example of "ivory-tower-think" (to borrow from Orwell). Please do not confuse theory with uselessness. Almost everything which has anything to do with computers was no more than a theoretical concept five, ten, 20 or 30 years ago.

For a survey of "ivory-tower" optimization, I suggest you see:


```
TEST:
PROCEDURE OPTIONS (MAIN);
DCL X(100) FIXED BIN (15) INIT((100)10);
DCL N FIXED BIN (15);
DCL I FIXED BIN (15);
DO I=1 TO 25000;
   N=10+X(75);
END;
END TEST;
LISTING PL/I - 1

CPU Time: 11 Seconds
```

```
TEST:
PROCEDURE OPTIONS (MAIN);
DCL X(100) FIXED BIN (15) INIT((100)10);
DCL N FIXED BIN (15);
DCL I FIXED BIN (15);
DCL K FIXED BIN (15);
K=75;
DO I=1 TO 25000;
N=10+X(K);
END;
END TEST;
LISTING PL/I - 2

CPU Time: 12 Seconds
```

```
TEST:
PROCEDURE OPTIONS (MAIN);
DCL X(100) FIXED BIN (15) INIT((100)10);
DCL N FIXED BIN (15);
DCL I FIXED BIN (15);
DCL ITEMP FIXED BIN (15);
ITEMP=I(75);
DO I=1 TO 25000;
N=10+ITEMP;
END;
END TEST;

CPU Time: 11 Seconds
```

Example 1.

```
INTEGER I(100) /100*10/
DO 100 J=1,25000
   N=10+I(75)
100 CONTINUE
STOP
END

LISTING WATFIV-1

CPU Time: 6 Seconds
```

```
INTEGER I(100) /100*10/
K=75
DO 100 J=1,25000
   N=10+I(K)
100 CONTINUE
STOP
END

LISTING WATFIV-2

CPU Time: 6 Seconds
```

```
INTEGER I(100) /100*10/
ITEMP=I(75)
DO 100 J=1,25000
   N=10+ITEMP
100 CONTINUE
STOP
END

LISTING WATFIV-3
```

Listing 5.
This month we are presenting a slightly different view of the Stringy Floppy. For months we have expounded the virtues of the "Stringy" and our Program Chairmen and users group organization. This month we are presenting a letter written by one of the program chairmen in response to a written inquiry by a potential "Stringy" owner. We present the letter in its entirety and without editing.

Richard Harrison
Rt. 2 Drysdale
Warrenton, Virginia 22186
6 May 1980

Mr. David L. Johnson
4106 Montreal Avenue
Prince George, VA 23875

Dear Mr. Johnson,

First of all please excuse the long delay in responding to your letter. The demands of my regular job keep me on the go for long periods of time.

I will key my response to the items as listed in your letter:

1. The STRINGY will give you excellent results with the TRS-80 Mod I (with or without the expansion interface.) STRINGY models are available for use with S-100 configurations: again results will be excellent.

2. Sorry, but cannot comment on machine language text editors for the Poly-88 system. Highly recommend the Electric Pencil for the TRS-80 (definitely over the R/S Script). Yes the Electric Pencil can be used with the STRINGY: and the files are stored on wafer.

3. I have several systems in use for general computing and specific applications, but the STRINGY is used on the TRS-80 Mod I 48K system. The STRINGY has been in use for one year now and other than two MECHANICALLY faulty tapes there has NEVER been a bad load or save with the unit. There is no 'Foolery' associated with the STRINGY, and as such it is a real work-horse which is elegant in its operational simplicity yet ultra-reliable.

4. My main application for STRINGY is in support of my Communications Repair business, i.e., inventory, billing, work processing etc. But that is not the ACID test for the unit...my kids are. The kids use it daily for games, education and general computer exploration. None of the sensitivities normally associated with floppy disc apply to the STRINGY. Sir, I have dealt with many computer companies over the past five years and there are only two which I have not found fault with either their product or the company officials, they are: EXATRON and APPARAT. What this means to you is that you will receive courteous responses over the telephone and prompt written replies, when requested (your chances of being ripped-off are slim with EXATRON).

Mr. Johnson, I am taking the liberty of sending a copy of this to EXATRON so that they may answer your questions regarding Poly-88 application in more detail and also get you on their literature mailing list.

Best Regards and Happy Computing.

Sincerely,

Richard J. Harrison

P.S. This letter is prepared using the STRINGY and Electric Pencil. If you are a HAM, will discuss this further over the radio sometime. My call is N2JR.

This is only a sample of the positive mail we receive each week and to us it is the best possible way to gauge the success that we are achieving through our efforts to provide a good product at a reasonable price with real product support.

With this issue, we are finally introducing the APPLE version of the Stringy Floppy. It has been a long wait but they are finally in production. Please see our ad elsewhere for more information or call our toll-free hot line. Watch this space next month for the introduction of the PET version.

INFORMATION & ORDERS

The ESF is assembled and tested at the factory, with a 30-day money-back guarantee and a one year full warranty. For fastest delivery, phone in your credit card or COD order using the toll-free line below.

Base price for the TRS-80 ESF, $249.50 (ask about the Starter Kit); for the S-100 ESF, $289.50; Apple with single drive is $299.50, dual drive is $499.50.

Info packets at no charge; users manuals for the TRS-80 ESF are available for $3.00 for shipping.

Handling is extra.

HOT LINE 800-538-8559

WITHIN CALIFORNIA 408-737-7111

If you have any questions about these products, about Exatron or about ESFOA call the Hot Line. Address letters to ESFOA, 181 Commercial Street, Sunnyvale, CA 94086.

Stringy Floppy is a trademark of Exatron Corporation.
FINALLY
AN ALTERNATIVE TO DISKS
THE EXATRON STRINGY FLOPPY
(MASS STORAGE SUBSYSTEM)
LOW COST - RELIABILITY - SPEED

INFORMATION PACKAGES AVAILABLE NOW FOR:
APPLE
PET
TRS-80
OSI
KIM/SYM/AIM
S-100
RS-232
STD-BUS
OEM

exatron
CALL OUR HOT LINE TODAY
800-538-8559

EXATRON, INC. • 181 COMMERCIAL STREET • SUNNYVALE, CA 94086
The 16-Bit
Super Processors
Are Here

This report zeroes in on the Intel 8086, the Zilog Z8000 and the Motorola MC68000.

Martin Moore
2735 S.W. 229
Beaverton, OR 97006

The gurus of the microprocessor business have been predicting a takeover by the 16-bit microprocessor for some time now. They told us about three years ago that the 16-bit microprocessor was just around the corner, and that the 8-bit machines had better heed the warning. And, as if to prove it, Texas Instruments came out with the TMS9900 microprocessor, the first, low-cost 16-bit microprocessor to hit the streets.

People didn't take to it immediately. The noise about 16-bit machines turned into a deafening silence. But it seems those gurus were right after all. They were just a little ahead of their time. The 16-bit revolution has come.

At this writing, at least four 16-bit microprocessors are available: Intel's 8086, Zilog's Z80000 (second-sourced by Advanced Micro Computers, Inc.), Motorola's MC68000 and Fairchild's 9440 Microflame.

The 16-bit microprocessors discussed here (I'm purposely leaving out the Fairchild 9440 because of its close resemblance to the Data General microNova) refer to memory as bytes, and for a very good reason. Few memory boards are set up to handle a 16-bit data bus. Almost everything available is for the 8-bit microprocessor. The manufacturers took this into consideration when designing their processors. Designing a microprocessor that can't access 8-bit memories is pointless. For this reason, all the manufacturers have built their devices to work with byte-oriented memory.

The 8086 Architecture

By using a silicon-gate NMOS process, Intel has managed to cram 29,000 transistors onto a very small die about 225 mm square (less than the area of Lincoln's head on the penny). That many transistors allow the 8086 to be divided into what are basically two processors. Fig. 1 shows a functional block diagram of the 8086.

Notice that the 8086 is divided into two halves called the bus interface unit (BIU) and the execution unit (EU). The 8086 performs a neat little trick by letting the BIU collect and send program information while the EU executes it. The BIU fetches instructions before they are required by the EU; it then loads the instructions in a stack, or queue, that will hold up to six bytes of instruction. The EU takes the instructions as it needs them, without having to wait for bus cycles, and without having to control such things as operand fetch and store, address location and bus control.

The process of parallel and simultaneous operation is called pipeline processing. It speeds instruction execution by never forcing the processor to wait while an instruction is being fetched.

Registers

The register structure of the 8086 is shown in Fig. 2. The 8086 contains 12 16-bit registers and a set of nine 1-bit flags. The asterisks in Fig. 2 represent the 8080A registers as a subset of the 8086 registers. This allows the 8086 to execute the 8080A instruction set without too much trouble.

The registers are grouped together within the 8086. Each group has a specific set of functions. The AX, BX, CX and DX registers are called the general register group, which are used in the arithmetic and logic operations of the 8086. Both halves of each register are separately addressable. Thus, you can think of this group as being two sets of four 8-bit registers.

The next four registers (SP, BP, SI and DI) are called the pointer and index register
group. They usually contain addressing offset values.

The instruction pointer (IP) register works in the same way as the 8080A program counter register.

The flag register contains nine 1-bit operation flags. The flags record 8086 status and are used to control the 8086 operation. Five of the flags are 8080A flags; four new flags have been added for the 8086.

Finally, the CS, DS, SS and ES registers, called the segment register file, are used in all memory address computations. For example, all instruction fetches are taken relative to the CS register, using the instruction pointer register (IP) as an offset.

These are not particularly general-purpose registers, and here is where the 8086 falls down in comparison to the Zilog Z8000 microprocessor.

Memory

The Intel 8086 boasts a remarkable 20 address lines, which allow the 8086 to address over one megabyte (1,048,576 bytes) of address space. (That equals about 62.5 16K-byte memory boards.) Of the 20 address lines, 16 are time-multiplexed to act as the data bus.

For best performance, the memory would be arranged with the least significant byte of a 16-bit data word located at an even address, and the most significant byte at an odd address. That's the way the 8086 expects it. Instructions are fetched from memory as words; the bus interface unit (BIU in Fig. 1) loads the instructions into the queue as bytes for consumption by the EU.

In addition to the massive one megabyte of address space, the 8086 can be configured to address 64K 8-bit I/O ports.

The requirements for using this memory and I/O are very specific, and are best found in the Intel MCS-86 user's manual. Suffice it to say that memory space is not a problem with the 8086.

Instruction Set

The instruction set for the 8086 is divided into six functional groups: data transfer, arithmetic, logic, string manipulation, control transfer and processor control. Each of the first three functional groups is divided further into subgroups of instructions.

Data Transfer. Data transfer instructions are divided into four classes: general purpose, accumulator specific, address-object and flag. These instructions are used to move data to and from the 8086.

Arithmetic. The 8086 arithmetic instructions provide five basic mathematical operations: flag register settings, addition, subtraction, multiplication and division. These instructions have a number of varieties, including both 8- and 16-bit operations and signed and unsigned operations.

Logic. The 8086 provides basic logic operations for both 8-bit and 16-bit operands. In addition, it has three single-operand operations and four double-operand operations.

String Manipulation. The 8086 can manipulate byte or word strings with relative ease. The 8086's ability to repeat string operations within hardware is one convenient feature. Primitive one-byte instructions can be prefixed with a repeat number. Then, that instruction (or series of instructions) can be repeated n times, with no extra coding required. This feature can prove important when performing such jobs as code translation.

Control Transfer. The 8086 has four classes of transfer operations: calls, jumps and returns; conditional transfers; iteration control; and interrupts.

Processor Control. A variety of 8086 instructions control the processor. The 8086 can be halted, single-stepped and told to wait. Also, a one-byte prefix can precede any instruction to "lock out" any request to use the bus (as might occur in multiprocessor systems). During the time the 8086 is in this locked-out mode, all interrupts are masked. Interrupt requests are latched, but not acted upon until the lock prefix goes away.

Summary

The Intel 8086 was the first of the new generation of 16-bit microprocessors, and as such is probably better than the 8080A (if, indeed, you can compare the two).

Intel literature says that the 8086 can increase program execution speeds from seven to 12 times over the 8080A, while using 10 percent to 25 percent less code.

Also, the 8086's I/O capability should prove irresistible in any situation requiring an intelligent controller.

Z8000

Zilog's entry in the 16-bit microprocessor race is the Z8000. When I first looked over the Z8000 specifications, I was instantly reminded of that old workhorse of the minis, the LSI 11, from Digital Equipment Corporation.

The Z8000 (also produced by Advanced Micro Devices as the AmZ8000) is newer than the 8086 and shows it. The Z8000 has eight times the direct memory addressing capability (eight megabytes) of the 8086.

Architecture

The Z8000 is register-oriented. It has sixteen 16-bit registers, 15 of which are general-purpose, and an instruction set that supports over 400 combinations of instruction types, data elements and addressing modes. The Z8000 is simpler than the 8086 and resembles a minicomputer more than a micro.

Memory

Two versions of the Z8000 are available: a 40-pin version (called unsegmented) and a 48-pin version (segmented). The 48-pin de-
Don Lancaster's "Cheap Video" concept allows almost unlimited options, including:
* Scrolling- Full performance cursor.
* Line/Character formats of 16, 32, 24, 80, 32, 64.... or almost anything.
* Graphics - up to 256 X 256 B&W; 96 X 128 COLOR (requires low-cost option modules)
* Works with 6502, 6800 and other micros.

SPECIAL OFFER: Buy the Kit (upper case alphanumeric option included) & get the Book at 1/2 price.

Dual Eight Inch Floppy Disk Drives.

Complete with power supply and all necessary cabling. Operates with single or double density controllers for up to 1 megabyte disk storage.
6400 bits-per-inch. 48 tracks-per-inch. 7msec. track-to-track access time. 500,000 bit-per-second transfer. Beige cabinet. 5” x 17” x 20 1/4”

Don't look now, but I think there's a wolf crying.

Electrolabs
P.O. Box 6721
Stanford, CA 94305
415-321-9601
USA 800-227-8266 Worldwide TLC 345607 Electrolabs PLA

Dealer inquiries invited.

the ULTIMATE in CHEAP VIDEO

BOOK & KIT ONLY $42.95

Fig. 3. Z8000 pin-out.

Fig. 4. Z8000 register set.
vice's extra eight pins increase its memory capabilities. I'll talk mostly about the 48-pin version. Remember that software written for the 40-pin version will run fine on the 48-pin version, but not vice versa.

The 48-pin Z8000 has the standard 16 address/data lines, much like the 8086 (see Fig. 3). In addition, the segmented version has an additional seven output pins (SN0-SN6 and SEG1) that extend the normal 16 address lines to 25 (SEG2 is a control line). AD15 can address 64K addresses. If you use the segment lines SN0-SN6, you can point to 128 segments of 64K each. Using all 23 address lines, total memory is eight megabytes of address space (8,388,608 addresses, to be exact).

The basic data unit for the Z8000 is thought of as an 8-bit byte. It will as easily operate with 16- or 32-bit data words.

Back to the eight megabytes of address space. If, along with the Z8000, you purchase a memory management device, the memory capabilities of the Z8000 are multiplied sixfold. The memory management device (MMD) couples to the high-order address lines (AD8-AD15), the seven segment lines and the status lines. You end up with a chip set capable of directly accessing 48 million addresses. For all practical purposes, this is virtual memory. This all adds up in the following manner:

\[\text{ADO-AD15} = 64K \]
\[\text{SN0-SN6} = 64K \times 128 = 8 \text{ megabytes} \]
\[\text{Status lines} = 8 \times 128 \times 64K = 48 \text{ megabytes} \]

The status lines serve to divide memory into system code space, normal code space, system data space, normal data space, system stack space and normal stack space. Each space can be addressed by a 23-bit address.

Aside from producing a huge address space, the MMD provides some other advantages. Consider the effort required to keep track of 48 million addresses. It is a monumental task at best, impossible at worst. Fortunately, the MMD, along with the Z8000 instruction set, does most of the work for you.

System/Normal. Recall that the status lines divide memory into system and normal code, data and stack space. The Z8000 can differentiate between your operating system code (system) and the code you're working on (normal). This allows the Z8000 to protect your system code from accidental alteration.

Addressing Structure. Addressing with the segmented version of the Z8000 is easy to do. The segment lines (SN0-SN6) establish a base address, pointing to one of 128 segments. The 16 ADO-AD15 lines point to a specific location within the addressed segment. The Z8000 registers are, therefore, designed to handle addresses in the same fashion.
Registers

The register structure of the Z8000 is one of its strong points. Fig. 4 shows the Z8000 register set. The 40-pin version has two stack pointers: a system stack pointer and a normal stack pointer. The 48-pin version has four stack pointers: 32 bits for normal operation and 32 bits for system operation. In the 48-pin version, 16 bits of the 32-bit stack contain the segment number, while the offset value is contained in the remaining 16 bits.

General-purpose registers. The Z8000 has 16 general-purpose registers, labeled R0 through R15. Each register can contain 16 bits of information. In addition, R0-R7 can each be divided into two 8-bit registers (RH0, RL0, RH1, RL1, etc.).

Word registers 32 bits long can be constructed from pairs of general-purpose registers (e.g., R0-R1, R2-R3). And 64-bit registers can be constructed from register quads (e.g., R0-R1-R2-R3, R4-R5-R6-R7). The 64-bit register quads are required by instructions such as Multiply and Divide.

Stack pointers. In the 40-pin non-segmented Z8000, R15 is doubled to act as the stack pointer (normal stack, system stack). In the 48-pin segmented Z8000, R14 and R15 are doubled to act as stack pointers (R14 contains the segment number, R15 the offset value).

Flag control word. The flag portion of the flag control word is the same for both versions of the Z8000. The flags used include carry, zero, sign, parity or overflow, decimal adjust and half-carry.

The control portion of the flag control word differs between the segmented and non-segmented versions. Control bits include vectored interrupt enable, non-vectored interrupt enable, stop mode, segmentation enable (48-pin version only) and system/normal mode.

Program counter register(s). The non-segmented version of the Z8000 has one 16-bit program counter register. The segmented version has two 16-bit program counter registers: the first holds the segment number, the second holds the 64K offset value.

New program status area pointer. This register contains the memory location of new program status words for the Z8000. In the non-segmented version, this register points to an address using only the upper eight bits of the 16-bit address bus. In the segmented version, two registers are used. One points to the segment number; the other points to the upper eight bits of the address.

When an interrupt or program trap occurs, the old program status words are pushed onto the system stack (identified by the system stack pointer register). New status words are fetched from the new program status area pointed to by the new program status area pointer register(s).

Refresh register. Refresh is a little less of a headache with the Z8000 than with the older microprocessors. A counter within the Z8000 automatically refreshes the dynamic memory. You can set a special memory refresh access at programmable intervals.

A programmable prescaler (a 6-bit modulo-n counter) is driven at one-fourth the system clock rate. The refresh register is nine bits wide and is automatically incremented by two each time the prescaler times out. This allows up to 256 rows of memory to be refreshed. The refresh feature can be disabled if necessary.

Instructions.

While developing the Z8000, Zilog determined which instructions were used most often. Zilog then took these statically frequent instructions (the instructions most often found in a listing) and reduced the number of words required to execute them. Less code density was the result.

Some 110 distinct instruction types are used by the Z8000. Each instruction is divided into four (more in certain operations) basic fields. Those fields include mode field, indicating the addressing mode; the opcode field, indicating the instruction; the data element type, the byte or word designation; and register designation field, designating the register used in the instruction. An instruction can require from one to five words, depending upon its type and addressing mode.

Data types. The Z8000 can operate on five data types: BCD digits (four bits), bytes (eight bits), words (16 bits), long words (32 bits) and byte and word strings.

The byte is the basic data element. The number of bytes in any instruction is implied in the instruction, or in some cases is explicitly detailed by the programmer.

Bits, bytes and words (both 16 bit and 32 bit) are manipulated within the Z8000 registers. Byte and word strings, however, are stored in memory. String manipulation is eased by the use of the Z8000’s auto increment/decrement addressing feature.

Instruction addressing modes. The Z8000 uses five main user-selectable addressing modes: register (R), indirect register (IR), direct address (DA), indexed (X) and immediate (IM).

In addition, several other modes are used for certain instructions: base address (BA), base indexed (BX), relative address (RA), auto increment and decrement.

Multi-processor capability. The Z8000, like the 8086 and MC68000, is specifically designed to work in a multi-microprocessor environment. The Z8000 has two pins included to ease multi-processor functions (see Fig. 3). The µ input disables the Z8000, while another processor is using a shared resource. The µ0 output lets the Z8000 prevent another processor from taking the bus if the Z8000 is using a critical shared resource.

Multi-processing is becoming more and more an economical prospect. The price drop in microprocessors versus their increasing power means that there is no reason to load one processor with all the work, when several can do the job better.

Summary.

The Z8000 is, above all, a general-purpose machine. With its large addressing capabilities, its most common use will probably be in mainframe minicomputers, competing with DEC. The Z8000 is an advanced machine, but don’t let that overwhelm you. The Z8000, like the other 16-bit processors, isn’t any more difficult to understand than your 8080 or 6800. It’s just a little bigger.

If you are interested in getting the complete story on the Z8000, get in touch with your local Zilog or Advanced Micro Devices representative.

MC68000.

Now we come to the mystery machine. During its development, Motorola kept a tight lid on the MC68000. Now they’re ready to send out small quantities for evaluation, though you still can’t order more than ten. Motorola is rationing the MC68000 for fear that a few big buyers will snatch up 90 percent of their stock for the next year.

Architecture.

The MC68000 appears to have been worth the wait. By using a HMOS fabrication method, Motorola has managed to put over 68,000 active devices on their wafer, as opposed to the 8086’s 29,000.

The MC68000 comes in a 64-pin package like the T.I. TM59900. Unlike either the 8086 or 28000, the MC68000 has separate address and data pins. But like the 8086, the MC68000 is a pipeline processor. Recall that the 8086 fetches instructions before it actually needs them. The same thing happens in the MC68000. One half of the device performs instruction fetches, while the other half executes the instructions. Here again is an example of pipeline processing, something you’ll be seeing a lot more of.

Registers.

You will find sixteen 32-bit registers in the MC68000 (Fig. 5). They are divided into two groups: eight registers for data and eight for address.

The data registers can be used for byte, word or long-word data operations. The address registers are typically used for stack pointers and base address registers. In certain situations, the address registers can
The trouble with video terminals today is that most of the low-cost models just don't have the performance to handle your tough applications. And the few that do are usually not compatible with your existing system. But now, Intertec has resolved this age old dilemma with the introduction of its new Emulator™ Video Terminal.

The $895* Emulator™ performs exactly as you command. With the depression of just a few keys, Emulator users can select terminal control codes of any one of four popular video terminals. The Lear-Siegler ADM-3A, The Soroc 10-120, The DEC VT-52, Or the Hazeltine 1500. Incredible! It's like having four terminals for the price of one.

But, best of all, not only does the Emulator replace these terminals, it outperforms them by offering enhanced user-oriented features. Features that those other terminals just don't have - at any price.

Standard Emulator™ features include: a sharp, crisp 12" non-glare screen with a full 24 line by 80 column display. Twin RS232C serial ports - one for the host computer and one for your printer. Four separate cursor control keys. A separate 18 key numeric pad. Keyboard selectable baud rates and operating modes. And, a host of visual attributes.

No matter which dumb or smart terminal you're using today, don't buy another until you check out our new Emulator™. You'll get the performance of four terminals for the price of one. And you'll probably save hundreds of dollars over the price you paid for your last terminal. Plus, you'll get unparalleled reliability, nationwide service and quick delivery.

Call or write us today for all the details.

Intertec terminals are distributed worldwide and may be available in your area now.

*Quantity one - Dealer inquiries invited
also serve as word and long-word data registers.

As a side note, some believe that the MC68000, with its 32-bit registers, will act as Motorola's bridging processor into the 32-bit mini field. We'll have to wait and see. Notice in Fig. 5 that the eighth address register is actually doubled. The A7 register acts as the stack pointer for the MC68000. And the stack pointer is doubled, as in the Z8000, into a user (normal in the Z8000) and supervisory (system in the Z8000) register.

The program counter register is 24 bits wide, allowing the MC68000 a memory addressing range of 16 megabytes (16,777,216 addressable locations).

The status register has some interesting features, too. This 16-bit-wide register is divided in half. The user byte contains the normal status information you would expect to see. The system byte contains three bits for the interrupt mask, one bit to indicate a user or supervisory operating mode and one bit to indicate a trace mode.

Trace. The trace feature is unique to the MC68000. When the trace mode bit is set, the MC68000 traps to a tracing routine (that you write) after each instruction is executed. This valuable tool is like a built-in debugging feature. You can use trace whether you're operating in the user or supervisory mode, but you can only enter trace mode from the supervisory.

According to Motorola, the unused bits in the status register are for future expansion. Maybe they'll convert the MC68000 into a 32-bit machine.

Memory

The MC68000 has 23 address lines, labeled A1-A23 in Fig. 6. Notice that the MC68000 doesn't have an address line A0; the data bus is controlled in a byte-oriented fashion. That is, there are two control lines on the MC68000 called upper data strobe (UDS) and lower data strobe (LDS). These two lines remove the need to ever use the least significant bit of the address bus.

Motorola plans on making available a memory management controller that will handle memory segmentation and protection, much like the Z8000's memory management device.

Instructions

Motorola has taken a number of steps to enhance the MC68000 instruction set.

First, the MC68000 instruction set is a super-set of the old MC6800 instruction set. This was done to ease translation of 68000 code to MC6800 code. A translator will be available to perform this upgrading task.

Second, Motorola performed the same research and coded to look at statically frequent instructions (those instructions that occur most often in a program listing). But Motorola went a step further and looked for dynamically frequent instructions (those instructions that are most often executed). Keeping the numbers in mind, Motorola tried to create instructions that were as short as possible.

Third, Motorola prepared for the emergence of modularized high-level languages, such as Pascal. Several specific instructions in the MC68000 instruction set are geared directly for structured languages such as Pascal. Instructions such as LINK and UNLINK allow linked data lists to be manipulated within the stack areas. There are other examples, but the point is that the MC68000 is a hardware set to use structured languages efficiently.

There are 59 distinct instruction types in the MC68000 instruction set. Each instruction, with a few exceptions, will operate on data bytes, words and long words. And most instructions use any of 15 main addressing modes. If you combine the instruction types, possible addressing modes and data types, you end up with about 1000 distinct instructions.

And yet, with all those possible instruction combinations, the basic instruction list is easy to remember. If you can program a 6800 without having to look at the book all the time, you can probably program an MC68000 without looking.

As with the other 16-bit microprocessors we've discussed, the MC68000 will perform signed and unsigned multiply and divide operations in hardware, thus speeding arithmetic program execution. The microprocessor can deal with BCD arithmetic, as well as standard binary integers. The new MOVE data instruction will allow you to transfer bytes, words and long words in all data addressing modes.

Speaking of addressing modes, the MC68000 has five basic types: register direct, register indirect, absolute, immediate and program counter relative.

Fig. 5. MC68000 register set.

Fig. 6. MC68000 pin-out.
In the register indirect addressing mode, the MC68000 has two sub-modes called post-increment and pre-decrement. Here again, as in the Z8000, the MC68000 has enhanced data string manipulation capabilities. Overall, there are 15 addressing modes of operation.

Three pieces of information are required in an MC68000 instruction: the location of the operand(s), the size of the operand (byte, word, long word) and the function to be performed.

The MC68000 will operate with dual operands. The location of the operand in memory is either explicitly specified in the instruction or implied by the instruction as addressing modes.

This short explanation of the MC68000 instruction set does not do justice to the wide range of instruction possibilities, and I suggest that you seek out more information from Motorola if you're interested in the MC68000.

Support

The 8080, Z-80, and 6800 have a lot of support devices. Rather than design totally new devices for the MC68000, Motorola decided to implement the existing chips. Almost all of the 6800 family of peripheral devices can be used (in pairs, usually) with the MC68000. The VMA, E, RW and RESET lines on the MC68000 are used exactly as they are on the 8-bit 6800. This means that you don't have to learn new peripherals as well as a new microprocessor when you use the MC68000. As far as I'm concerned, this is a big plus for Motorola.

Summary

I'm short-changing you in this brief outline of the MC68000. It is a remarkable device, and Motorola has apparently put a lot of forethought into its design. Literature describing this microprocessor in more detail will be available soon.

At this writing, Motorola is experiencing difficulty with the design of a buffer register within the MC68000. It doesn't want to pass data accurately. This will undoubtedly be cleaned up before the device gets into mass production.

What Does All This Mean to You?

First, does this mean 16-bit microprocessors will replace our reliable 8-bit processors? No. The 8-bit machines are too well entrenched to be dislodged by an increase in data length. After all, some 4-bit microprocessors are still around, used in simple control applications.

A plan is now before IEEE to adopt the S-100 bus, with provisions for a 16-bit-wide data bus. If this goes through (as it probably will), then S-100 will become standardized and will be capable of handling the new 16-bit processors.

The current outlook is that these microprocessors will be used in mini-type applications. They require massive memories to take advantage of their architecture. The part-time hobbyist may not want to become involved with the 16-bit processors. After all, purchasing 48 megabytes of memory is costly.

But if you're interested in plain old number crunching, with the maximum possible throughput, then you should definitely investigate this new breed of microprocessor. Speed is increased merely by doubling the data size for each instruction used. Other enhancements are included in the 16-bit machines, too. Long-word multiplication and division in hardware certainly won't hurt anyone's feelings.

Should you look into the 16-bit microprocessor? You bet! But if you decide to start implementing 16 bits, don't treat them any differently than your 6800. Use the expertise you've developed with 8-bit machines, and don't let the whiz-bang numbers fool you.

We're entering a new era in microprocessors (we seem to do this about once every three years). This will probably be a short era too. Next? 32 bits. In the meantime, let's sit back and watch the 16-bit revolution.
The marriage between the law offices of Piel and Lynn in Montgomery, Ala., and their Sol 20 computer system is one that has worked.

For less than $12,000, the firm has an electronic helpmate that does collection letters, divorce papers, incorporation papers and bylaws. It processes real estate closings in half the time it used to, and has reduced the time needed to prepare a will with a trust from two or three hours to 25 minutes.

And, says attorney Richard Piel, the system paid for itself in the first few months of operation.

Use of the Sol 20 revolves around the Word Wizard, a word-processing program from Processor Technology. Since paper is the major physical output of a law office, the computer was put right on the production line.

The disk files are loaded with documents and standard forms. The correct form is called from the file, the CRT fills in the blanks, and a Diablo printer produces the document. The result: a customized document that looks like an original.

Entering each document the first time takes a lot of work, and system operator Glenda Senn uses numerous control codes. She has taken one data processing course, and the rest of her training is on the job.

Buying the microcomputer was a family effort involving much research, says Piel. The firm spent two years looking for a system that would meet its needs economically. Many systems were available, but most dedicated word processors were expensive and rigid. They often controlled, rather than helped, office procedures because of a feeling that maximum use should be made of the expensive equipment.

Piel and Lynn do not do the actual number crunching of figuring accounts on the Sol. The system is used to address envelopes and print the bills. Piel is convinced that timely billing is the key to prompt payment, a viewpoint many businesses can appreciate.

The firm does not do accounts receivable or office typing on the system; much work is still done on standard office machines.

The key to the firm's success, says Piel, is that the company knew what it wanted. While local free-lance software people are looking at more uses for the system, anything the firm buys will have a fixed price and a specific purpose. The firm, says Piel, bought the computer system with realistic expectations, and was not driven by a need to get a return on a large investment.

Piel and Lynn's successful use of a relatively low-cost microcomputer system has several lessons for other small businesses thinking about a similar move.

- First, determine exactly what you want the system to do.
- Then, shop around. Do not be lured by pretty hardware.
- Buy general programs for a predetermined price.
- Put in some time setting up the proper forms.
- Do not let the system dictate the way you do things.
- Finally, be happy if you meet your original goals.

As in all marriages, realistic expectations and formal understandings of roles and responsibilities are necessary. It probably will not always be a bed of roses, but a warm relationship with a microcomputer can lead to unexpected delights.
CONSULTANTS WANTED

Earn $200 to $400 per day and enjoy more independence working as a professional consultant. The computer industry's needs for qualified consultants are at an all-time high. A fast way to start is to get listed in the NATIONAL REGISTER OF COMPUTER CONSULTANTS AND SOFTWARE HOUSES. The 1980 edition of the REGISTER will be published July 15. Write or phone (without any obligation) for Registration Form and Profile Card.

ESSEX PUBLISHING CO.
285 Bloomfield Avenue
Caldwell, N.J. 07006
(201) 783-6940

A year ago, when nobody had ever heard of me, I said these disks could turn a TRS-80 into a serious computer.

Now they tell me I'm "the standard of the industry."

I'm Irwin Taranto, and times have changed. In the first twelve months, almost a thousand businesses put me to the test. You can buy my TRS-80 systems all over the country — dozens of companies sell them. Some are my dealers, some aren't. And this creates a new set of problems.

You see, learning to use a computer — any computer — is like learning anything else. It takes some getting used to. If you sit down with a computer program and the manual and try to figure it out all by yourself, you'll probably just give up and feel you've been had. You have to hang in there for a month, make a few phone calls, and have somebody who really understands the system help you work it out.

That's why I still answer the phone. And why, I guess, people say all those nice things.

The Model I systems

So far, I have six systems for the Model I, at $99.95 each, plus $20 each for the books where required. For the Cash Journal option on the General Ledger, add another $50.

Accounts Payable
Invoicing

And the Model II programs

Some brand new, highly sophisticated programs for the TRS-80 Model II, at $249.95 each, plus $20 for the book where required.

General Ledger/Cash Journal
Accounts Payable/Purchase Order
Accounts Receivable/Invoicing
Payroll/Job Costing

For the Model I programs, you can tell us what you need in a letter or by phone. You get the disk and all the instructions you need. Any problems, just call me.

For the Model II programs, I ask you to fill out a questionnaire before I send you any materials. The systems have so much flexibility we tailor them to your needs.

That way, I make sure you get a system that works. If you have any doubts about that, I'll give you the names of some people in your area who've already been through the process. Let them tell you whether I really deserve that fancy new reputation.

Taranto & ASSOCIATES, INC.
P.O. Box 4073. 4136 Redwood Highway. San Rafael CA 94903
(415) 472-2767. Add $3.50 per order for handling. 6% sales tax in California only. Master Charge, Visa, C.O.D.

Microcomputing, August 1980 35
Winning the Micro Game

Don Lancaster
Synergetics

Hands on is everything. The only way to ever learn anything about computers is to jump in with both hands and feet, get on line and do some computing. Until you actually do and see what the micro world is about, you’ve accomplished nothing. You must do things yourself, on your own terms, in front of a working, real computer, alone.

It’s both funny and sort of sad to hear a student say he just took a DP course but couldn’t get any CPU time. He got taken, not the course.

You become computer literate by using computers, not by having someone tell you about them or by reading about them.

Understand a timing loop by writing one and watching it work. Do an interface by taking a triac, an optocoupler and a 100-Watt light bulb and shining light on the real world. Find out what an interrupt is by interrupting a computer. Do it—yourself.

You have to make mistakes. If you are learning micros or developing any new product, half your experiments should fail. A canned set of exercises on a micro trainer is next to worthless if everything falls into place and works perfectly the first time.

In the micro world, you make mistakes to learn and to progress. You should expect mistakes. Prepare for them. Welcome them. Aggressively seek them out.

Of course, it makes sense to never make the same mistake twice. Build on what you have. To expand your microcomputer universe, try new things that may fail. Find out why they fail, and use this as a newer and bigger base to work from.

Usually, you are never anywhere near where you think you are in solving any hardware or software problem. Unexpected surprises and plain old stupidity are always between you and reality. If you think you have something working perfectly, you probably don’t even understand the problem.

You must mix hardware and software. Some heads-in-the-clouds pure software people out there still believe that hardware is a mundane inconvenience standing between them and pure “computing.” And there are technician types who do everything with bushel baskets full of integrated circuits.

Neither approach is good. Sometimes a simple and inexpensive hardware circuit can replace bunches of software. Other times and other places, a few lines of elegant software can eliminate the need for custom circuits or a special device.

Winning computer products will combine both hardware and software, using the best features of each to give you the simplest system and the lowest possible cost.

This means that if you are a hardware person, you should learn programming and learn it fast. If you have a software background, start soldering and wire-wrapping with a vengeance.

Synergy says that $1 + 1 = 4$. This is definitely the case when you get an optimum mix of hardware and software interacting with each other.

Neither can stand alone—not any longer. The real world is fuzzy. Some textbooks and lab experiments work every time. Everything is nice and clean, neatly tied up. You do exactly what you need to do the job, no more, no less. Unfortunately, reality doesn’t work that way.

First, you must deal with people, and that will always mess things up. Key items will be missing or late. The magic chip may be a figment of an ad writer’s dreams. Or a problem may have a simple and inexpensive technical fix that is politically or socially unacceptable. Goals conflict. So do egos.

Expect and accept fuzziness. As you get into a new computer area, things will start out completely confusing. Then they will become fuzzy. Then they will become, for a glorious instant, crystal clear. Then, of course, they get fuzzy again as you become more involved.

As you go to the bigger picture, expect more fuzziness. Also recognize that there really isn’t much in the way of real-world beginnings and endings. Rather, things sort of dribble off into the great whatever.

Micros might — just might — be the missing link between people and intelligent life in the universe.

Hit the basics hard. Any 6502 micro freak can sit down and immediately “prove” that the 6502 is ten times better than any other micro in the world. The trouble is that you can do the same with any other micro family, as well.

For most micro uses, it makes no difference which micro from which family you use. Even if there temporarily was a “best” micro, other factors such as your own skills and attitude, the available software, the elegance of your competitors’ programs and so on will reduce any advantage of the “best” micro to zilch.
If you don't happen to like the "best" micro, just wait a month or two, and it will get shot out of the saddle by something much more promising.

This all means that the micro you learn is not the micro you will use. Later on, there will be much better ones to work with, and they are sure to have completely different tech details.

To beat this, hit the basics hard. All known micros have address space and addressing modes. All have interrupts, subroutines, clocks, ports, memory and I/O. Use any micro you like to add tech details to the fundamentals. But get the essentials down solidly.

Reach out and put the touch on someone. The nickels in the micro world are now to be made in places where people are not yet using micros. Find these places and get involved with these areas and people on their own terms.

Put micros to work feeding cattle, treating sewage, gambling on Wall Street, designing looms, mixing cement, baking calzones, milking goats, hauling pecans, questing tinajas, animating video, co-oping groceries, hybridizing sinsemilla, improving wood stoves, redesigning bicycles, restoring steam calliopes, monitoring steam gauges, selling paper clips, cutting dress patterns and teaching trumpets.

When you do reach out, always work in the other person's terms and language, bending the micro info to fit as you can. If they are smart enough to learn micros, they won't need you for anything.

Find places where they don't yet know that micros can help. Then jump in.

Don't reinvent the wheel—steal the plans instead. Much of the needed and obvious micro-related information has already been done and is readily available for your use. For instance, if you want to drive a Teletype or another printer, use someone else's driver routine. Don't stop what you are doing and invent your own—unless you truly want to know how a driver program works.

Scads of Morse code trainer programs are out there. Why write another? The same goes for sorts and word justification subroutines. And there are more versions of Lunar Lander than there are moons in the solar system. How many Hangman, Hexapawn or Nim games have you seen?

Now, if you want to learn these programs, that's fine. But if your goal is using something, rather than creating something, find out what has already been done and go with it, or improve it and then go with it. Refer to monitor listings, user software exchanges, micro magazines, application notes, club newsletters, program books and micro information exchanges for programs to use.

Better wrong now than right later. In anything you do in the micro world, your first attempt will be wrong and will have to be reworked. So, immediately kludge up your first attempt and let your mistakes show you the way to go. Often you don't even understand what the real problem is until you are inside a program or a wire-wrap board looking at it.

Try a simple, quick and dirty tactic that at least sends you in roughly the direction you want to go. Make some guesses. Take a stab at it.

In your early attempts, if it works, use it. Start your project flying more or less right side up. Later on, you can go back and add structure to your programs, elegance to your methods, convenience to your user and simplicity to your hardware.

Add the final spit-and-polish on the way out the door, and not early in the game. Write it down. And not on the back of an old envelope, either. Documentation is the aren't supposed to smile while you are playing their games.

Simon says don't smile. It's still a game. Have fun.

You will never get enough. No matter how far you have gone in microcomputing and no matter how much of what kind of hardware and software you have on hand, you will always "need" more of something.

More memory? Start with a 1K trainer, then 4K, then a 16K micro. Then overflow the 16 megawords of an extended micro space. Need hard copy? Start with Excedrin headache number ASR-33, then on to thermal, a Selectric and finally a daisywheel.

Now, if only daisy was intelligent and had its internal word processing.

From plain-jane video, go on to graphics, color graphics, hi-res and then super-resolution color with gray scale. From cassettes, it's on to floppy, dual floppies, quad density and then a Winchester.

You can learn far more about micros watching fourth graders zap Klingons than you ever will in a university COBOL course.

There never is, nor will there be, a time when you have "enough" of anything. What looks like a light at the end of the tunnel is a train speeding towards you.

You will find only one way out of the "more" syndrome. Always go with what you have. Make it work. Live with it as long as you can. Force it to pay its own way.

Make it do. Use it up. Wear it out.

If it's old line, stomp on it. Some pre-micro people and institutions are still kicking around the lunatic fringe of the new micro world. They persist with large, bureaucratic, centralized, insanely priced and unavailable megacomputers run by an elite priesthood singing the incantations of an arcane language. They completely fail to recognize the power of the micro as a highly personal, one-to-one, decentralized, inexpensive, interactive and individual congenial tool.

You can learn far more about micros in twenty minutes watching a pair of fourth graders zap Klingons than you ever will in a university COBOL course.

Old-line conventions include IBM, batch processing, COBOL, decollators, Honeywell, key-to-disk, FORTRAN, keypunches, centralized billing and data encryption. They are without any redeeming social value. They had their chance and blew it. We
VERONA™

If you are an 8800 Assembly Language programmer, VERONA® will help you write better programs in less time. VERONA is a terminal-oriented, dictionary-based, user extensible assembly language programming utility. Use VERONA to quickly produce programs for software design checking or for hardware troubleshooting. VERONA puts the full power of the processor at your fingertips, giving you an ability to interact with your system that you never had before. For ISIS, CP/M, and others. From $48.

FBE Research Company Inc. P.O. Box 68234 Seattle, WA 98108

RS232C Paper Tape compatible

Paper Tape Transmitter/Model 612

Uses manual control or X-on, X-off 90-260 volt, 50-60 Hz power, up to 100 char/sec synchronous or asynchronous; gated internal or external clock, RS 232C; current loop or parallel output, reads 5-8-level tape, 7-11 frames per character, even or odd parity. Desk top or rack mount.

Addmaster Corporation, 415 Junipero Serra Drive, San Gabrielle, CA 91776, (213) 285-1121, Telex 674770 Addmaster SGAB

Computer Forms

Distributor of Computer Products

All paper products are white, blank, tractor feed, (punched) fanfold continuous stock.

- 6" x 4" Postcard Stock (7" with 1/8" margins) Use as is or trim for 5 1/2" x 5 1/2"

pk. 1000 cards $17.95 pk. 2000 $29.95

Box 4000 $49.95

Standard 9" x 11" Computer Paper (8 1/2" x 11" sheet)

pk. 500 sheets $11.95 Box 1000 sheets $22.95

Box shipping weight 31 lbs.

Try our mini-paper 6" x 8 1/2" sheet size (7" with 1/8" tractor margins)

Box 3200 sheets $23.95 sh. wt. only 17 lbs

Cash Order: Include $2 for shipping, excess will be billed with your order.

Credit card Order: Shipping will be added to your order. Include all credit card information.

Send for FREE CATALOG of paper products:

Postcard stock, address labels, many sizes & types of paper.

Computer Forms. (616) 429-7922

5588 Caribou, Stevensville, MI 49127

tried it their way and it didn’t work.

Old line not only fails to see the problem; they are the problem.

Always ask, “Why are you telling me this?” The useful products and ideas in the micro world are not heavily advertised. In fact, anything genuinely useful takes a lot of time and trouble to nail down.

If a micro is widely or heavily advertised, it more than likely means that something much better is available elsewhere. If someone is radically trying to convert you to his microprocessor or his way of doing things, the chances are he has drifted into right field and become snookered into a bad scene. He is looking for converts to ease the pain when he is shot out of the saddle.

When anyone tries to tell you about micros, always ask, “What is the real reason you are telling me this?” Find out the motives involved. Then get a second opinion, check out another choice or find a different viewpoint before you plunge ahead.

Nail down all resources. It is easy to assume that formal courses and expensive, hardbound textbooks are the only way to “learn” microcomputers. In fact, these are two of the worst possible ways to become computer literate. Most of these learning aids are stillborn, hopelessly obsolete and misdirected.

Anything you can relate to that involves micros is a resource. Your first, and foremost, resource is yourself, through hands-on experience.

Other resources include micro magazines, clubs, game playing, Dungeons and Dragons sessions, micro trainers, computer stores, used wire-wrap boards, tech journals, funky books, reader-service cards, bookmarks, student teachers, trade shows, surplus stores, computer fairs, rap sessions and swap meets.

And most important of all, go on your own vibes. There is no right or wrong direction in the micro world. In fact, 99.9 percent of the micro world remains unknown, unexplored and uncharted. So, if “they” insist on something, most often “they” don’t know what they are talking about.

If you are interested in something and want to go in that direction, fine. Do it!

Your surest bet for long-term winning is to roll with your own vibes. Explore what you want to. Ignore the herd thundering the other way. Get off the beaten path.

Make yourself your own best customer. Satisfy your own needs and your own curiosity. Put as much psychic energy and personal value as you can in the routes that you pick, and you are certain to win the micro game.

You are, by definition, the center and the most important part of the micro universe.

Don’t ever forget it. ■
HERE'S THE SECOND HALF . . .

BY THE AUTHOR OF THE FIRST HALF.

Learning Level II picks right up where the TRS-80* Level I manual left off, and is written in the same style that made the Level I manual a classic.

Learning Level II teaches you to use every Level II BASIC feature, including PRINT USING. You also learn to use the built-in Editor, a powerful tool for changing and correcting programs. A special section covers the many changes needed to update the Level I Manual for use with your Level II machine.

Learning Level II also shows you how to operate the Interface box, Dual Cassette, the Realtime Clock, Printers and other peripherals. All 23 error messages are explained in detail. The entire book is written so you can understand it. (And, it has an index.)

Your Level II TRS-80* simply isn't complete without *Learning Level II*. Order your copy today!

COMPUSOFT PUBLISHING
A Division of
Compusoft, Inc.
San Diego, CA 92119

360 pgs.
Soft Cover
2nd Edition

Want to REALLY UNDERSTAND The BASIC Language?

From the
same author
comes the book
you've been asking for!

The BASIC Handbook is the
definitive reference and "idea"
book, explaining in detail the BASIC
language as used in over 100 favorite
micros, minis, and mainframes.

A virtual ENCYCLOPEDIA of the BASIC language.

In it is everything you need to know about the 250
most important BASIC statements, functions, operators and
commands, explained in a way that you can put them right to work.

If there is an alternate way to write
a program using other BASIC
words, the Handbook shows you
how. If there is a function
needed but your machine
doesn't have it, the
Handbook explains how to
accomplish the same thing in other ways.

This HANDBOOK is written
to be used! With The
BASIC Handbook you
can finally make
those programs found
in magazines run on
your computer!

Is TRS-80* Level II covered — YES!
Is PET covered — YES!
Is Apple covered — YES!
Sorcerer, Altair, Imsai, Etc.
YES . . . and over 50 more!

Compusoft Publishing — 1050 EK
Telephone (714) 588-0996

Pioneer Way, El Cajon, CA 92020

* The BASICA Handbook

□ Yes, I want to LEARN Level II. Please send __ copies, My U.S. check or money order for $19.95 each + $1.45 for postage (air mail, $.50) is enclosed.

□ Yes, I need the BASIC Handbook. Please send __ copies, My U.S. check or money order for $18.95 + $1.35 for postage (air mail, $.50) is enclosed.

Name ____________________________
Address ___________________________
City, State, Zip ____________________

Dealers Inquiries Welcome
OSI's C2 is a general-purpose system incorporating several unique features. In addition to the advertised features, there are other hardware features and prototype areas on many of the circuit boards that you can use to implement some specialized circuits.

While the documentation is sparse for the C2-4P, a thorough study of the 500 manual and the schematics for the various boards will reveal several features such as: dual system clock operation, a serial interface with multiple baud rate operation and modern control leads, two selectable video screen sizes, reverse video display and a parallel interface option.

This article describes the hardware features of the various boards and the modifications I made to these boards to implement the additional features. I used an older C2-4P system, which contained two power supplies (+5 V, 3.5 Amps and -9 V, 1.5 Amps), a four slot bus backplane, a model 500 CPU board, a model 540 video board and a model 542 polled keyboard in a typewriter-style case. In the newer systems the 500 CPU board has been replaced by a 502 CPU board, and there is only one power supply (+5 V, 4.5 Amps).

Model 500 CPU Board

This CPU board includes the following hardware features:
- A 6502A microprocessor operating at 1 MHz.
- A 6850 ACIA (asynchronous communications interface adapter)-based serial interface configured for both RS-232C and 20 mA loop current.
- 4K static RAM for user programs.
- Microsoft BASIC in 8K ROM.
- System monitor and I/O controllers in three 1702 EPROMs.
- Provisions for a user-provided 6820 PIA (peripheral interface adapter) parallel I/O port.

System Clock

The 6502 clock (see Fig. 1) is provided by a dual one-shot operating as a multivibrator. The clock circuit is populated as an adjustable two-speed clock that is normally set for a high speed of 1 MHz, but with the optional WAIT diodes, it will revert to a low-speed operation of approximately 500 kHz whenever the WAIT line is brought low.

With the components supplied by OSI, you can adjust the clock via R50 (see Fig. 2) for a high speed of 1.6 MHz without creating any problems. Since the frequency will have a tendency to change with temperature, all frequency adjustments should be made only after a long warm-up and with the case closed.

If the clock speed has been set too high or has drifted high, then the following problems, which are usually caused by the slow access time of the EPROMs and the ROMs, may occur:
- Screen does not display C/W/M? after reset.
- Monitor or I/O not operating correctly.
- Keyboard operation not recognized by computer in machine or BASIC mode.
- Programs stop running or will not run.
To correct the problem, lower the clock speed or install any of the WAIT diodes (D5, D6, D8, D10 or D11). See Fig. 3.

I have been operating the system at 1.58 MHz without any WAIT diodes and have not had a problem. However, I have noticed that programs execute faster and the cassette operation is flawless even when operated at 1200 baud.

ACIA Clock

The ACIA-based serial interface (Fig. 4) uses a 555
A stable multivibrator to provide the baud rate clock. The clock circuit has provisions for five capacitors, which are jumper selected to provide a wide range of baud rates. Potentiometer R51 allows the frequency to be fine-tuned to 16 x the baud rate. However, this hard-wired method limits the interface to operation at only one baud rate.

There are two methods you can use to switch the frequency of the 555 multivibrator: change the C5 capacitor or change resistors R22 and/or R23. Of the two methods, I chose the former. Changing resistor values involves changing multiple combinations of R22 and R23 or using large values for R22. Additionally, the duty cycle of the square wave, which is directly affected by the ratio of the resistor values, becomes a spike whenever the R22-R23 ratio is too large.

I made the following modifications to provide switch-selectable baud rates:

1. Calculate the capacitors required for the desired baud rates. Table 1 gives the formula to calculate the capacitor values. Table 1, column A, gives six capacitors for six possible baud rates.
2. Install the six capacitors on a two-pole, six-position rotary switch (Radio Shack #275-1386). The capacitors in column A are not available as standard values. Therefore, I used standard values wired in series to obtain the required values (see Table 1, column B).
3. Connect the first capacitor, 0.068 μF, between the first switch position and one terminal on the other half of the switch (see Fig. 5). The five remaining capacitors are wired in series from terminal to terminal starting at the first terminal.
4. Remove the jumper between the J5 donut and the capacitor on the board (see Fig. 6).
5. Install a shielded wire from the J5 donut to the rotary switch pole. The shield should be grounded at the board end with the other end soldered to the ground terminal on the rotary switch (see Fig. 5). I used a shielded wire to prevent stray signals from affecting the 555 circuit and frequency.
6. After the wiring has been completed and checked, turn on the computer and allow it to warm up.
7. To check and adjust the frequency, connect a frequency counter to L1 connector pin 7 (see Fig. 6), then reset the computer.
8. Select the first switch position, 110 baud, and adjust the potentiometer, R51 (see Figs. 5 and 6), for a frequency of 1760 Hz.
9. Select the other baud rates and check that they are within 0.1 percent of the required frequency (see Table 1, column C). Do not readjust R51.

Frequency Adjustment

If the frequency is higher than the required value, a low-value trimming capacitor can be added in parallel with the capacitor being tested to lower the frequency. If the frequency is lower than required, replace the capacitor with a capacitor of lower value and add trimming capacitors in parallel to obtain the required frequency.

With the capacitors wired in series, any change made to one capacitor will affect all others after it in the chain. When trimming capacitors to obtain the required frequency, always work on the lower frequency before adjusting the next higher frequency.

Using the above capacitor trimming procedure, it is possible to get the frequencies within ±.05 percent (see Table 1, column D). Generally, I use only three baud rates — 110 for a Teletype and 300 and 1200 for the audio cassette and modem.
MULLEN Computer Products

H8 PROTOTYPE BOARD
Now available for the Hewlett-H8 hobbyist.
- Full-sized FR-4 board with heatsink/mounting brackets. bus connectors and polarizing key.
- Designed for ease of external cable connection
- All plated thru holes, .042" on 1" centers. power and ground traces

HKB-1 H8 PROTOTYPE BOARD $46. Kit

H8 EXTENDER BOARD
Our HTB-0 lets H8 owners troubleshoot their boards faster and easier. Each board can be extended above the computer for complete access to all circuits and components.

FEATURES
- Sturdy 3/32" board
- Made in pin edge connectors with formed leads for easy scope probe attachment
- Jumper links in power lines makes current measurement and fusing easy

HTB-0 H8 EXTENDER $39. (Kit only)

Up-Date MULLEN Computer Products

S-100 EXTENDER/LOGIC PROBE
- New interlaced ground and signal traces. improve performance, reduces noise, with the new high clock frequency boards
- New brighter display. makes the very handy logic probe easier to use
- New proposed IEEE bus edge connector label, with all the fine quality documentation you expect with Mullen kits.
- High quality FR-4 board is double sided with plated thru holes and solderless preassembled for easy kit assembly
- Gold on all mating connector surfaces for better electrical contact
- Formed connector leads for easy scope probe attachment
- Jumper links in power lines makes current measurement and fusing easy
- Large "Huge" area lets you build and test your own circuits

S-100 EXTENDER/LOGIC PROBE $99. Kit $97. Asem/tested

S-100 CONTROLLER BOARD
- 8 relay — OUTPUTS
- 8 opto-isolator — INPUTS
- 256 switch selectable addresses

Our S-100 CONTROLLER is used in laboratories, at universities, and in industry, in hundreds of applications, and may be the answer to your control problem. Complete programming and operating instructions included.

For higher power applications a 500W AC POWER MODULE is available for $15.

MULLEN Computer Products

NEW TRS-80* CONTROL BOX
ASSEMBLED BURNED-IN & TESTED, READY TO USE

Special introductory price
M-80 OCTOPORT
$169. Asem/Tested
- 8 reed relay — OUTPUTS
- 8 opto-isolated — INPUTS
- Selectable port address
- Power supply
- Assembled cable & connectors

Use your TRS-80, and our M-80 control box to program control energy saving devices at home or in your business. Send for our free application notes today.

S-100 EXTENDER BOARD

Fig. 6. ACIA clock component location.

Fig. 7. Serial interface circuit.

For 300/1200 baud operation only, install a .0068 uF capacitor on the board and adjust R51 for a frequency of 19,200 Hz. Under software control, set the bits in the 6850 control register (see serial interface section) to select the + 16 (1200 baud) or + 64 (300 baud) clock rate.

Serial Interface

The 500 board (see Fig. 7) is provided with a 6850 ACIA chip and the components for both a 20 mA current loop and an RS-232C interface output circuit, simultaneously connected, and a 20 mA or RS-232C input circuit. Only one input circuit can be connected at a time.

The 6850 is a 24-pin DIP that interfaces the CPU to outside devices by converting parallel I/O to serial I/O. Either a byte of parallel data or a control code is transmitted by the CPU to
Watch the Sun rise over the Horizon!

The new price/performance leader in S-100 computers

Complete System $4245.00
Includes: Sun 1 Computer, terminal and desk
Plus fully integrated accounting system,
General Ledger, Accounts Payable & Receivable.

Optional 9 Mb hard disk system—$2975.00

Sun 1 Computer
64K-bytes RAM
656K-bytes storage
Dual Microdrive Drives
CP/M* 2.2 & C-BASIC2
Serial and Parallel
printer ports

Video Terminal Port
Powerful 4Mhz Z80A CPU
Real Time Clock/System
time and date
2 week delivery A.R.O.

P.O. Box 61775 • Sunnyvale, CA 94088 • (408) 737-1606

*CP/M of Digital Research
*Sun TM of Intelligent Business Machines
the 6850, while data or status is received by the CPU. In addition to the data bus and the transmit and receive clock and data leads, the 6850 has other control leads: the modern control leads CTS, RTS and DCD; the RS (register select) lead, which determines which of two addressable locations will be accessed; and the RW lead, which determines whether a read or write operation is in progress. (The two addressable locations are the control/status address (F000 hex) and the data address (FC01 hex)).

The control register is used to control the operation of the 6850. A code, which establishes the parameters for the 6850's operation (see Table 2), is written into the control register by the CPU. When the computer is reset, the CPU first loads the register with 03 hex (reset) and then B1 hex (+16 clock rate, eight bits, no parity, two stop bits). If this operation does not meet your needs, reset the control register and load in a new code (see Table 2).

The status register uses status flags to monitor the serial data transfer logic (see Table 3). The status register is read into the CPU's accumulator, then bit 0 or 1 is shifted right into the carry register. The carry register is then checked for the status of the receive data register or the transmit data register. If the register is set, the CPU will proceed to read or write data to the 6850 (see Table 3).

A program to read or write data to the 6850 is listed in Table 4. The other bits in the status register are used by the 6850 to determine the status of external devices, bits 2 and 3; to detect receiving errors, bits 4, 5 and 6; and to determine the source of an unacknowledged interrupt request, bit 7. The computer does not check the status of bits 2 through 7, and, in most cases, we do not need to check them for status during normal operation.

The serial I/O ports of the 6850 are wired to the components that comprise the 20 mA and RS-232C circuits. (The 20 mA current loops interface is specifically for use with the ASR-33 Teletype. It has no common ground and cannot be used with terminals requiring a common ground on output.) The 500 board has a serial interface auxiliary connector mounted near the 6850 chip (see Fig. 8), which uses pins 5 through 12 for the RS-232 and 20 mA data leads and a CTS (clear to send) control lead.

The 6850 uses a low CTS to set the status register and report a TDRE (transmit data register empty) condition. The computer determines when to transmit a byte of data to the 6850 by testing the register for the TDRE condition. A high
Table 4a. Serial data operation. Receive data from the serial port. This program will continue until all data is received. It should check for end of data character, and the index register must be incremented to access the next memory address.

<table>
<thead>
<tr>
<th>Code</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>load status register</td>
</tr>
<tr>
<td>LSR</td>
<td>shift bit '0' to carry</td>
</tr>
<tr>
<td>BCC</td>
<td>not ready, check again</td>
</tr>
<tr>
<td>STA</td>
<td>store data in memory</td>
</tr>
</tbody>
</table>

Table 4b. Transmit data from memory to serial port. This program will continue until all data has been transmitted. It must increment the index register to access the next memory address. It must also check for the last data address.

<table>
<thead>
<tr>
<th>Code</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>load status register</td>
</tr>
<tr>
<td>LSR</td>
<td>shift bit '1' to carry</td>
</tr>
<tr>
<td>BCC</td>
<td>not ready, check again</td>
</tr>
<tr>
<td>STA</td>
<td>store data in ACIA</td>
</tr>
</tbody>
</table>

CTS signal will prevent the register from reporting a TDRE condition.

The CTS is normally strapped to ground; however, the lead can be used as an interrupt signal for loss of transmission facilities, low paper alarm, printer or cassette not on line, etc., to prevent the needless transmission of data into an open line.

To modify the CTS lead, remove the strap between pin 24 and ground and install a 1k resistor from pin 5, auxiliary connector to +5 V. The CTS lead, which will be high, can now be used to determine the status of the receiving device. Do not make this modification unless you can control the CTS lead, since the computer will go in a loop on SAVE, where it will remain until CTS is brought low.

The 6850 also has an RTS (request to send) control lead used to inform a data set that it is ready to transmit data. The data set will return the RTS signal as a CTS signal when it establishes a data link. The 6850 outputs a low RTS; therefore, CTS will be low and the computer will proceed to output the data. The RTS terminal, pin 5 of the 6850, is not used; however, it can be wired to the spare pin 4 of the auxiliary connector.

The only remaining work is to install an EIA connector (DB255) in the cutout at the rear of the case and wire it to a Molex plug (KK-156 cut to provide one 3-pin and one 9-pin plug) following the pin-out in Table 5. Now you can use the EIA connector to connect to a printer or data set. The 20 mA leads are wired to the connector only for convenience and

![Serial interface connector.](image)

Fig. 8. Serial interface connector.

Master Accountant

Accounts Receivable

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/R wimanual</td>
<td>$100.00</td>
</tr>
<tr>
<td>Manual</td>
<td>$25.00</td>
</tr>
<tr>
<td>Demo system wimanual</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

Accounts Payable

Keeps track of current and aged accounts payable. Maintains a complete record for each vendor, helps determine which vouchers to pay by due date or discount date or within certain cash requirements. Designed to interface with the general ledger (if present) to provide automatic monthly journal entries.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/R wimanual</td>
<td>$100.00</td>
</tr>
<tr>
<td>Manual</td>
<td>$25.00</td>
</tr>
<tr>
<td>Demo system wimanual</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

Payroll

Allows a company to prepare its periodic payroll for hourly, salaried, and commissioned employees while accumulating the necessary information for tax reporting. It generates the monthly quarterly, and annual returns to be filled with local, state, and federal governments. Will interface with the general ledger (if present).

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payroll wimanual</td>
<td>$100.00</td>
</tr>
<tr>
<td>Manual</td>
<td>$25.00</td>
</tr>
<tr>
<td>Demo system wimanual</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

General Ledger

Designed to record your financial transactions and balances of those transactions, provide accurate and timely statements (balance sheet and income statement), and provide you with comparative data on your financial position one year ago at this time. Automatically interfaces with A/R, A/P, and PR (if present).

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Ledger wimanual</td>
<td>$100.00</td>
</tr>
<tr>
<td>Manual</td>
<td>$25.00</td>
</tr>
<tr>
<td>Demo system wimanual</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

Computer Services

30 Hwy. 321, N.W.
P. O. Box 2292
Rocky, N. C. 28401
(704) 284-1616

APPLE — JACK

New!

Super Starbase Gunner

$19.95 DISK

Most shoot-em-up target games are 2-D shoot across the screen type, and quite frankly there is a glut of inferior ones. A need for a new approach exists, such as fast 3-D HIRES simulations with clever and complex challenges. How about shooting into the screen, into 3-D space, where the target is mathematically many feet behind the screen surface? How about computer intelligent targets that shoot back and use strategy and learn? How about all this and the best attributes of the more popular games? Let's include high score, 10 levels of play, snappy sound effects, colorful explosions and real time graphics. Why not go all the way and have a three dimensional gunship! A real space battle simulation... Nah... no one would believe it or could even write it. Right?

WRONG! WE HAVE IT... and it is SUPER STARBASE GUNNER. We are very excited about this product because it is all the things we wish we had and didn't. And you can have it now with this introductory offer.

SUPER STARBASE GUNNER DISK... $19.95 48K with APPLE/ROM

AVAILABLE FROM YOUR DEALER OR DIRECT FROM
APPLE — JACK. BOX 51, CHERRY VALLEY, MA 01611
(INQUIRIES INVITED)
ATTENTION SOFTWARE AUTHORS

From The Company That Brought You Adventure, by Scott Adams

We are now accepting TRS-80, Apple, and Atari software for review to manufacture under the Adventure International label. Join the fastest growing software company in the U.S. and enjoy a money paying hobby as well. Just send a machine readable copy of your program with documentation to: Adventure International, Box 3435, Longwood, Florida 32730

RAM Addressing

The 2102 RAM on the 500 board is decoded for a 4K block starting at hex 0000 (page zero) (see Fig. 9). Additional memory boards, model 420 or model 527, can be added to a spare slot on the motherboard. The addition of a 420 board will not cause a problem, since the board can be decoded to occupy the next unused 4K block of memory. The addition of the 527 board, however, will create a problem, since it can only be changed to occupy an 8K block. Therefore, when installing a 527 board, you should decode it for page zero and decode the 2102 RAM for some other location. The foil trace from the Ax donut to the right-most donut (see Fig. 10) must be cut and a new jumper installed to the Ax donut.

I installed a 527 board with 16K of memory and moved the 2102 memory to location C000 hex. This memory is now used for machine-language programs. BASIC, which normally uses all consecutive memory, cannot normally access this memory; therefore, there is little danger of destroying any programs stored at that location.

ROMs and EPROMs

No changes were made to these areas, but other ROMs, PROMs or EPROMs containing a more versatile language or monitor can be substituted for the ROMs and EPROMs presently on the board. The 500 CPU manual lists other ROMs that can be used with only minor strapping changes.

Peripheral Interface

The 6820 PIA interfaces with the CPU to provide two parallel I/O ports. Although I have not implemented the parallel port fully, I have added the following components to the board (see Fig. 11):

- A 40-pin IC socket at location A1.
- J1 and J2 jumper located at the bottom and right side of socket.
- Two Molex connectors along left edge of board.

All that remains is to install the 6820 chip in the socket and then develop devices that will work with the parallel port, joystick, X-Y plotter or AC control. The newer 6522 VIA (versatile interface adapter) may be a better chip than the 6820; however, I have not investigated the modifications required.

We will continue with our discussion of hardware modifications to OSI's circuit boards next time.

Fig. 9. 2102 RAM address decoding.

Fig. 10. Address jumpers for 2102 RAM.

are not part of the RS-232C standard.

Table 5. EIA connections.

<table>
<thead>
<tr>
<th>EIA</th>
<th>Pin-out</th>
<th>Auxiliary</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Input to CPU</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Output to CPU</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Request to send</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Clear to send</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Signal ground</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>20 mA output (+)</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>20 mA output (-)</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>20 mA input (+)</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>20 mA input (-)</td>
<td>25</td>
<td>11</td>
</tr>
</tbody>
</table>

Note: Auxiliary connector pins 1, 2 and 3 are wired to the 6502 CPU control pins, RDY and RES.
THE NEXT GENERATION OF MICROCOMPUTERS IS HERE AT QUASAR DATA PRODUCTS

IF YOU SEE IT OUR WAY THEN WE THINK WE HAVE THE PRODUCTS FOR YOU:
- THE S-100 BUS IS HERE TO STAY, IT IS NOT THE GREATEST BUT WITH PROPER TERMINATION IT WORKS RELIABLY AT HIGH SPEEDS, AND SINCE IT IS NOW AN IEEE STANDARD, IT IS WELL DEFINED.
- THE 8 BIT SYSTEMS ARE USEFUL BUT THEY ARE THE LIMITING FACTOR FOR MANY APPLICATIONS.
- THE 16 BIT SYSTEMS ARE THE WAY FUTURE SYSTEMS WILL GO. WHY NOT? THERE IS VERY LITTLE PRICE DIFFERENCE AND AN ORDER OF MAGNITUDE PERFORMANCE DIFFERENCE.
- THE REAL USEFULNESS OF THE 16 BIT MICROPROCESSORS WILL BE DETERMINED BY THE SOFTWARE.
- THE SYSTEMS USING 5¼ INCH DISK DRIVES REALLY DO NOT HAVE ADEQUATE MEMORY STORAGE OR COMPUTER POWER FOR MANY BUSINESS OR SCIENTIFIC APPLICATIONS.
- SIXTY-FOUR KILOBYTES OF ADDRESSABLE RAM, THE MAXIMUM FOR 8 BIT SYSTEMS, IS NOT ADEQUATE FOR MANY BUSINESS OR SCIENTIFIC APPLICATIONS.
- IT IS NOT WORTH BUYING 8 BIT SYSTEMS OR BOARDS NOW IF YOU CAN GET THE SAME SOFTWARE WITH 16 BIT SYSTEMS AT ABOUT THE SAME PRICE.

Z-8000 SERIES 16 BIT CPU S-100 BOARD — CAN BE PLUGGED INTO YOUR EXISTING SYSTEM

- FULLY S-100 IBM COMPATIBLE
- SUPPORTS EXISTING 8 BIT MEMORY AND 8 BIT PERIPHERAL BOARDS
- CAPABLE OF READING AND/OR WRITING 8 BIT, 16 BIT OR MIXED 8 BIT AND 16 BIT AND/OR 16 BIT PERIPHERAL MODULES CAN SIMULTANEOUSLY CO-EXIST IN THE SAME BUS WITHOUT ANY MODIFICATIONS
- CAPABLE OF OPERATING AS A SLAVE PROCESSOR TO ENABLE YOUR EXISTING CPU TO CONTROL THE Z-8000

QDP-8100 WITH 2 MEGABYTES STORAGE STANDARD (OPTIONAL 4 MEGABYTES)
- Z-8000 SERIES 16 BIT CPU S-100 BOARD - SEE ABOVE SOFTWARE (PROVIDED WITH THE SYSTEM)
- CP/M 2.2 OPERATING SYSTEM
- BASIC
- 2M/8K EMULATOR
- MONITOR, DEBUGGER, DISASSEMBLER
- SOFTWARE OPTIONS: PASCAL, UNIX
- UNITX OPERATING SYSTEM COMING

EACH SYSTEM CONTAINS:
- INTELLIGENT CRT TERMINAL (80 CHARACTERS X 24 LINES)
- CP/M DIGITAL RESEARCH
- UNIX BELL LABS
- FULL TECHNICAL SUPPORT FROM THE STAFF AT QUASAR DATA PRODUCTS

4 Mhz 64K Dynamic RAM
16K - $250 32K - $350 48K - $450 64K - $549

QUASAR FLOPPY SYSTEM
- Two MFE DBL sided drives
- Cable
- Case & Power Supply
- assembled and tested Wood cabinet $1,895

QUASAR 2 MEG FLOPPY
- 2 MFE double sided drives
- Teletek disk controller board
- Power supply & cable
- Wood cabinet
- CP/M version 2.2 & bios
- Assembled & tested $2,295

Dealer Inquiries Invited, Hours:9-5:30 M-F
Specifications Subject To Change

PAPER TIGER
Includes Graphics $949
Cable for TRS-80 $39
Call for Apple

TELETEK DBL DENSITY, DBL SIDED
Disk Controller Board

MFE Double Sided - Double Density
8" Floppy Disk Drives (best) $650
Using the Teletek Controller under CP/M, THIS DRIVE WILL GIVE YOU ALMOST ONE MEGABYTE PER DISK DRIVE. Power supply for above $110

TI - 820
Serial Printer
- Full package options $1995

Checks, money orders accepted
Add $2.50 freight charges on orders under 10 lbs. Over 10 lbs. F.O.B. Cleveland

QUASAR DATA PRODUCTS
25151 Mitchell Dr., No.Olmedst, Ohio 44070 (216)779-9387

Reader Service index—page 241
Back-Space Mod for CP/M and Microsoft BASIC

An annoying characteristic of the system prompted this article.

Rod Hallen
State Dept. Accra
Washington, DC 20520

I have used Digital Research's CP/M disk operating system and Microsoft disk BASIC for about two years, and I still think the combination is great. However, one feature of both of them annoys me: the way character deletions are handled.

If you type a CP/M command line and inadvertently hit the wrong key, you can delete that character from the command line buffer by pressing the Delete key. If you continue to press the Delete key you will delete another character from the buffer for each depression. That's fine. What bothers me is the screen presentation. Instead of the cursor backing up and erasing the undesired characters, they are repeated on the screen. You type DIX by mistake, delete to get rid of the X and you have DIXX. CP/M understands that this means DIR, but there has to be a better way. This is especially confusing when you have to make multiple corrections within a line.

A worse situation exists in Microsoft disk BASIC. The first time you hit Delete, a backslash is printed, then the undesired character. If you continue to hit Delete, the previous characters are printed one by one. When you hit anything other than Delete, another backslash is printed, and then you can go on with the line. I assume the reason for both methods is that they were originally designed for a hard-copy terminal, which can't back up and erase.

The Better Way

I finally decided to rewrite CP/M so that the cursor would back up and erase, instead of echo, anything I wanted to eliminate. Unfortunately, all this echoing and backslashing takes place deep within CP/M and Microsoft, and I don't have a source listing for either. I do have a source listing for my BIOS (Custom Basic Input/Output System), which is almost as good.

I fooled CP/M by filtering the output to get rid of the backslashes. At the same time, I wanted to use the Back Space key instead of the Delete key for corrections because Delete is an uppercase function on my keyboard and Back Space is not. It was simpler than I thought; now I wish I had done it a year ago.

Listing 1 is a portion of my BIOS. Your BIOS should be similar, but it will not be exactly the same since each microcomputer implementation is different. That is why it is called a "custom" BIOS. I use a Cromemco Z-2 with an Imsai VIO video interface board and a Percom C1812 for interfacing to my Spinwriter ICR.

CBIOS Operation

Note the CONIN routine. This keeps checking the keyboard status port to see if bit 6 is a 1. If it is, a character is waiting; if not, CONIN checks again. When a character is ready it is brought to the accumulator and bit seven is cleared. Next, check for a Back Space (hex 8) and, if you don't find one, return to CP/M with the keyboard character in the A register. If you find a Back Space, set the Delete flag for later use, then load 7FH, the ASCII Delete code, into the A register and return to CP/M.

You've hit a Back Space, the DELETE FLAG is set and the Delete code is sent because

| Listing 1. The portion of my BIOS that handles keyboard input and screen output. This has been modified to eliminate Delete and Back Space echoes and to implement a true Back Space. |
CP/M doesn't know what to do with a Back Space. At this point, CP/M deletes the last character from the Command line buffer and echoes it to the screen. Intercept that echo before it gets to the screen output routine, then back up and erase the last character instead.

CONOUT is my video output routine. Enter it with the desired character in the C register and immediately save it. Then get the DELETE FLAG and check to see if it is set. If neither it nor the MICROS FLAG is set, a normal character must be coming through, and you can jump directly to the screen output routine (OUTZ).

If the DELETE FLAG is set, ignore any output from CP/M and erase the last character on the current screen line. If the output character is a backslash, you're dealing with a Microsoft BASIC Delete. In this case, set the MICROS FLAG and exit without sending the backslash to the screen.

If the character isn't a backslash, it must be an echo, so ignore it. Instead, send a Back Space to the screen to back up the cursor and a Delete to eliminate the character the cursor now sits on. This is where you and I might be in conflict. Your video interface may need some other code or codes in order to back up the cursor and erase the last character. The Delete by itself might be sufficient. In any case, consult the manual for your video interface board or terminal to find out how this should be handled.

As long as you hit the Back Space key the cursor continues to back up, erasing characters as it goes. After each Delete is sent to the screen the DELETE FLAG is reset. As this routine is now written, the Delete key will still work the same way it did before, echo and all. If you want to use the Delete key instead of the Back Space key for corrections, then change the CPI 8 in line 6 of Listing 1 to CPI 7FH.

OK, but what about the second backslash in a Microsoft correction? You've already ignored the first backslash and set the MICROS FLAG. The following echoed characters will be ignored and the undesired ones erased in the same manner as with a CP/M correction. When the trailing backslash comes along, it will be ignored also because the DELETE FLAG will be reset and the MICROS FLAG will be set. At this time, reset the MICROS FLAG and exit.

An unexpected benefit of this modification came up in connection with ED.COM, the CP/M text editor. Since my new keyboard routine converts Back Spaces to Deletes, Back Space also works within the body of an ED.COM text file while editing. However, Back Space is 08H, which is also the code for a Control H, the block move code used within the body of an Electric Pencil text file.

The modification I'm describing here will effectively eliminate the block move instruction, which is not good. Therefore, I have an unmodified CP/M BIOS on the disk that contains the Electric Pencil II word processing system so it will work properly.

Figure 1 is a flowchart of the keyboard input routine, and Fig. 2 is the screen output routine.

That's all there is to it. If you have done any assembly-language programming, you shouldn't have any trouble modifying your CP/M BIOS. I haven't mentioned the steps necessary to the new BIOS into its proper place in the CP/M system and then get it onto your disks because it would take too long.
Solve your disk problems, buy 100% surface tested Dysan diskettes. All orders shipped from stock, within 24 hours. Call toll FREE (800) 235-4137 for prices and information. Visa and Master Card accepted. All orders sent postage paid.

Dysan Corporation

PACIFIC EXCHANGES
100 Foothill Blvd.
San Luis Obispo, CA 93401. (In Cal. call (805) 543-1037.)

The world’s most popular microcomputer, with 16K of memory and Level II basic for only $720, complete with full 90 day Radio Shack warranty. We accept check, money order or phone orders with Visa or Master Charge. (Shipping costs added to charge orders.)

Disk drives, printers, peripherals, software & games... you name it, we’ve got it (both Radio Shack & other brands). Write or call for our complete price list.

C&S ELECTRONICS MART, LTD.

SUPER SPECIAL
Apple II 16K
$999.99

The Paper Tiger.
$950.00
With Graphics $1090.00

WHY PAY MORE?
Compare our prices and service

SOROC
IQ 120 $ 790.
IQ 140 $ 990.
CENTRONICS PRINTERS
Prices too low to advertise.
Call for best price.
LIVERMORE DATA MODEMS
300 BAUD $ 170.
RS-232, 2 yr. uncond. guarantee

BASF DISKETTES
5¼" 10/$30.
8" 10/$30.

CABLES
IEEE to Centronics $100.
RS-232 $ 25.

COMMODORE SPECIALS FREE
PET 32K (N&B) $ 99.50
PET 16K (N&B) $155.
PET 8K $ 99.
PET 2040 Disk 129.5
PET 2022 Tractor Printer 99.5
PET CZN Cassette Deck 92.5

BP GENERAL LEDGER
Accounting System for Apple II Computers—Special. $399.

COMPUTER PRODUCTS INTERNATIONAL
P.O. Box 17675 Washington, D.C. 20041
703-573-9633

ELECTRONICS MART, LTD.

AUTHORIZED DEALERSHIP Radio Shack

32 EAST MAIN • MILAN, MICHIGAN 48160 • (313) 439-1508
INSIDE LEVEL II
The Programmers Guide to The Level II ROMs

INSIDE LEVEL II is a comprehensive reference guide to the Level II ROMs which allows the machine language or Basic programmer to easily utilize the sophisticated routines they contain. Concisely laments, calling sequences, and variable passage for number conversion, arithmetic operations, and mathematical functions, as well as keyboard, tape, and video routines. Part II presents an entirely new composite program structure which loads under the SYSTEM command and executes in both Basic and machine code with the speed and efficiency of a compiler. In addition, the 18 chapters include a large body of other information useful to the programmer including tape formats, RAM usage, relocation of Basic programs, USR call expansion, creating SYSTEM tapes of your own programs, interfacing ROMs, and many other topics. INSIDE LEVEL II is a clearly organized reference manual. It is fully typeset and packed with nothing but useful information. It does not contain questions and answers, ROM dumps, or cartoons. INSIDE LEVEL II...$15.95

PROGRAM INDEX FOR DISK BASIC
Assemble an alphabetized index of your entire program library from disk directories. Program names and free space are read automatically (need not be typed in) and may be alphabetized with a fast Shell/Metzner sort by disk or program. The list may also be searched for any disk, program, or extension; disks or programs added or deleted; and the whole list or any part sent to the printer. Finally, the list itself may be stored on disk for future access and update. "The best thing since sliced bread" (January issue of '80 Microcomputing). One drive and 32K required. INDEX...$19.95

SINGLE STEP THROUGH RAM OR ROM WITH STEP80
STEP80 allows you to step through any Basic or machine language program one instruction at a time, and see the address, hexadecimal value, 2-log mnemonic, register contents, and step count for each instruction. The top 14 lines of the video screen are left unaltered so that the "target program" may perform its display functions unobstructed. STEP80 will follow program flow right into the ROMs, and is an invaluable aid in learning how the ROM routines function. Commands include step (trace), disassemble, run in step mode at variable step rate, display or alter memory or CPU registers, jump to memory location, execute a CALL, set breakpoints in RAM or ROM, and relocate to any page in RAM. The display may also be routed to your line printer through the device control block so custom print drivers are automatically supported. STEP80...$16.95

MACHINE LANGUAGE FAST FOURIER TRANSFORM
This complete package includes 3 versions of the machine language FFTASM routine assembled for 16, 32, and 48K machines, a short sample Basic program to access them, a 10K Basic program which includes sophisticated interactive graphing and data manipulation, and a manual of instructions and examples. The machine language subroutines use variables defined by a supporting Basic program to make data entry and retrieval extremely fast and easy for custom implementation. They perform 20 to 40 times faster than their Basic equivalent (256 points in 12.5 seconds), and require less than 1550 bytes of memory. FFTASM...$49.95

FOR THE MODEL II
LYNC
from Midnight Software

High level data communications for Model IIs with CP/M. LYNC will send and receive any file with automatic error checking and retries. Either end may initiate transfers, and multiple files may be sent with wildcard filenames and direct or indirect listing. Remote or local directories may be called from within the program. Features full protocol, non-protocol file transfer, and real-time conversation modes. May be used over phone lines at 300 baud or direct to another computer at up to 9600 baud. Also available for other CP/M computers. LYNC...$95.00

ORDERING: Complete satisfaction is guaranteed or a full refund will be made. All programs are shipped on cassette unless $5 is included for a formatted (no system) disk. Include $1 postage and handling. California residents add 6% sales tax. Visa, Mastercharge and COD orders accepted.

Box 435-C Summerland, California 93067 (805) 969-4557
Level II BASIC
On a Z-80 System

Although the author used Radio Shack’s three-ROM BASIC, the two-ROM version should work as well.

Richard J. Uschold
80 Woodview Dr.
Port Orange, FL 32019

Since I have been a dedicated hardware hacker for many years, I just had to build my own computer. I started designing at Christmas in 1976. By September 1977 I had my computer basically working, and by Christmas 1977 it was working in BASIC. It was a 2K Tiny BASIC interpreter, but it was better than nothing.

After about a year of using my Tiny BASIC, I decided I was ready for a real BASIC. Since I had chosen the Z-80 microprocessor for my computer, I could use any BASIC written for the 8080 or the Z-80.

There were a number of BASICS available that required from 8K to 24K of memory at prices from $50 to several hundred dollars. I really liked the idea of having the BASIC in ROM so that I wouldn’t have to load it from tape every time, which seemed to take forever. (Even with my 2400 baud cassette interface, programs longer than 4K become annoying!) This meant I had to either useEPROMs or buy the BASIC already in ROM. The EPROMs would cost upwards of $80, plus the price of the BASIC.

There was only one BASIC offered in ROM that I knew of, although I had heard rumors of another one coming soon. The rumors have since become fact, and Livermore BASIC is now available on an 8K byte ROM for $95. I bought the other one, Radio Shack’s Level II BASIC, for $89.10. (Several companies offer ten percent off Radio Shack’s original $99 price. Radio Shack has since raised the price to $120.)

Radio Shack’s Level II BASIC has another significant advantage—software availability. Since it is the most popular microcomputer around today, it has much software designed for it. Also, many programs not originally written for it are being offered in compatible forms (for example, the CP/M disk operating system and the Electric Pencil).

In this article, I will describe how I interfaced the Level II ROMs to my computer, even though my hardware bears little resemblance to that of the TRS-80. I will also give some hints to those computerists whose hardware doesn’t resemble mine either!

Preliminary Work

Before I bought the Level II ROMs, I did some preliminary investigation, which included re-reading articles that described the TRS-80 hardware and software. I also bought and read the “TRS-80 Microcomputer Technical Reference Handbook” published by Radio Shack. All of this material provided several important pieces of information.

First, the TVT was a more or less standard type of memory mapped interface, which, I figured, should present no problems.

Second, the keyboard was an unorthodox arrangement with the key matrix directly mapped in memory (see Fig. 1). I figured I could write a program to take ASCII data from my keyboard and calculate the required memory bits to set so that the ROM could find the bits in memory and convert them back to ASCII (a kludge, but it worked!).

Third, the cassette interface was software timed and would require a different clock rate on my processor or else some software patches to get the timing right.

Finally, and perhaps most importantly, the ROMs were located in memory at address 0000H. This meant I would have to move my monitor, which was now there, to another address. I moved it to F000H. This required a reset vector other than 0000H to initialize to the monitor.

The circuit I used was described in the September 1977 Kilobaud (“Using an Invisible PROM,” p. 106, by Jack Regula). My version is in Fig. 2. I spent the next month or so rewriting and improving my monitor. When I had it just right, I put it in

Fig. 1. TRS-80 keyboard connected to the address and data buses. (Reprinted from the “TRS-80 Technical Reference Manual,” courtesy Radio Shack.)
EPROM, and I ordered the Level II ROMs.

Getting Ready

While waiting for the ROMs to arrive, I wrote a couple of programs to simulate the TRS-80 hardware, and I made a couple of hardware modifications to my computer in those areas that could not be readily done with software. The first program, in Listing 1, simulated the TRS-80 memory-mapped keyboard. This program is an interrupt driver that must be used as such. The program exits by jumping to my normal keyboard interrupt routine.

As you can see, the normal routine checks for a control-Z character and jumps to the monitor if it detects one. This is an invaluable feature of my monitor. This allows me to always jump back to the monitor if for some reason the executing program hangs up (except if it disables interrupts or destroys the monitor RAM area).

If you don't have an interrupt-driven keyboard, you can't use the program in Listing 1, but don't worry, you can still put Level II on your computer. It is highly desirable that you have some method of interrupting the computer, saving the registers, etc., and jumping back to your monitor. It is also necessary that you use interrupt mode 2 on the Z-80, since the other interrupt locations are used by Level II BASIC.

If you use Listing 1 with most keyboards, you will not be able to enter the same character twice in a row! The reason for this is because when the program sets the bits in memory to simulate the TRS-80 keyboard, it never resets the bits until the

Listing 1. TRS-80 Keyboard Simulator program converts the ASCII data from my keyboard to the memory-mapped bits expected by the Level II BASIC ROM. Program is simpler than it might have been due to the logical placement of the keys in the keyboard matrix (see Fig. 1).
Listing 2. The first part of this program generates the bit patterns necessary to program my programmable character generator so it simulates the TRS-80 graphics. The second part sets up my computer so it is compatible with the Level II BASIC ROM.

next key is hit. If the next key is the same as the last one, the same bits will be set and the ROM will think you have not released the key yet!

There are several solutions to this problem. I modified my keyboard so it gives a second data strobe when a key is released. This will strobe in a null, and the program will clear the memory when the key is released. Another solution is to hit any key on the keyboard that is not encoded by the program. This will clear the memory and leave it that way. This is only necessary if you wish to hit the same character twice in a row.

Actually, I don't really recommend you use this program. I am only describing it since it is the way I started this project. Later,
FROM PROGRAMMA
HI-RESOLUTION GRAPHICS FOR THE TRS-80®

LOWER CASE
The 80-GRAFIX board includes two sets of lower case characters at no additional cost.

INVENSE VIDEO
The 80-GRAFIX board allows you to do inverse video to high-light your screen displays.

DEMONSTRATION PROGRAMS
The 80-GRAFIX board is supplied with a Character Generator software and several demonstration programs.

FINALLY, AT LAST...
HI-RESOLUTION GRAPHICS is available for your TRS-80 computer system. The 80-GRAFIX board from PROGRAMMA International, Inc. gives your TRS-80 high resolution capability that is greater than the Commodore CBM/PET or even the revered APPLE II.

80-GRAFIX gives the TRS-80 an effective screen of 384X192 pixels, versus the normal 127X192 for the TRS-80, 80X50 for the CBM/PET, or the 280X192 of an APPLE II. As an added feature, 80-GRAFIX offers you lower case characters at no additional cost. Of course, you can also create your own set of up to 64 original characters using the supplied Character Generator software.

The 80-GRAFIX board is simple to install (note that this voids your Radio Shack warranty), and programming is done through BASIC. 80-GRAFIX opens up a whole new realm of software development and excitement never dreamed of for the TRS-80!

CHARACTER GENERATOR
The supplied character generator software allows you to create your own character set of up to 64 original characters.

REAL-TIME GRAPHIC GAMES
With the 80-GRAFIX board you can write exciting real-time games using BASIC.

EASY INSTALLATION
The 80-GRAFIX board is simple to install and fits inside the TRS-80 case.

GRAPHICS GALORE
The 80-GRAFIX board and the supplied Character Generator allow you to become an artist.

ELECTRONIC DESIGN
The 80-GRAFIX board has unlimited application in Electronic design and Education.

80-GRAFIX HI-RESOLUTION
Finally, the only means to protect your computer investment is to order an 80-GRAFIX board TODAY!

EXCITEMENT & FUN
Open up a new realm of software development with the 80-GRAFIX board.

Available exclusively through PROGRAMMA at the cost of $149.95
Please check with us for availability prior to ordering.

VISA and MASTERCHARGE accepted.

TRS-80 is a registered trademark of the Tandy Corp.

PROGRAMMA INTERNATIONAL, INC.
3400 Wilshire Blvd.
Los Angeles, CA 90010
(213) 384-0579 384-1116 384-1117

Reader Service Index—page 241

Microcomputing, August 1980 55
I'll tell you what you should use and what I am now using.

Another noteworthy feature about this program is the shift. The TRS-80 keyboard program generates lowercase characters if the shift key is pushed with a regular key. It also generates special control characters when the shift is pushed with the arrow keys.

I handled this by using the eighth bit as the shift bit. My keyboard has an extra key that sets the eighth bit when pushed. Most keyboards don't have this.

The second program I wrote while waiting for the ROMs is an initialization of my system so that the ROMs will think they are hooked up to a TRS-80. Listing 2 essentially is the program, although it is a little bit different. I changed it slightly after I got the ROMs and learned a few things I didn't originally know.

The first part of the program initializes my programmable character generator to simulate the TRS-80 graphics characters. The programmable character generator is essentially the same as the one described in Byte magazine (May and June 1978). There are 128 programmable characters that can be printed by sending the codes 80H-FFH to the video driver or directly loading these codes in
the TVT memory area. The TRS-80 has 64 graphics characters having codes 80H-BFH. These corresponding characters are generated by the program.

The next section, command decode, checks for one of three options: initialize, continue or reset. The initialize section jumps to the ROM so it can initialize the Level II RAM area as it requires. The reset jumps to the ROM, where the reset button on the TRS-80 would send it. This is used when the Level II hangs up and you do not wish to destroy the BASIC program in memory.

On my system, I type a control-Z to get back to the monitor and then BR B is the BASIC command in my monitor that jumps to the program I am now describing. R is the reset option. The continue option initializes a few more things, which I'll describe later, restores the registers and continues where it was interrupted (usually by a control-Z). I frequently use this to save BASIC programs with my 2400 baud cassette interface rather than use Level II's 500 baud cassette interface.

I made several hardware mods to accommodate the Level II ROMs. The simplest was to move my RAM, EPROM and TVT RAM to the proper locations. The TRS-80 hardware manual has a memory map, so this was no real problem. The other two mods were a bit more involved. Both of these mods are for the cassette interface.

The first one (Fig. 3) changes the clock speed during the cassette operation. Normally my computer runs at its rated speed of 2.5 MHz; during a cassette operation, the speed is reduced to 1.7896 MHz. This is about one percent higher than the TRS-80 clock and is more than close enough when you consider the tolerance of the cassette machine.

The required clock rate is one-eighth the rate of my TVT clock, so I didn't need another oscillator. The required clock is also one-half the color burst frequency. There are inexpensive crystals available that you can use; 3.579 MHz color burst crystals cost less than $2.

The other changes are more directly related to the cassette interface itself (Fig. 4). The output circuit is little more than a couple of latches and a few resistors. I also added some Tri-state buffers so I could use the same cable as my 2400 baud interface. The first input circuit I tried is simpler than what the TRS-80 has, with three fewer op amps and many fewer resistors and capacitors. The idea was to change the input circuit I had been using with my 2400 baud interface as little as possible.

Well, I was finally ready for the ROMs, which would not arrive for over a month.

The ROMs arrive

After calling the company twice, asking where my order was, I finally received the ROMs, which came on a small circuit board with a 24-pin jumper cable and another four-wire ribbon cable. No instructions came with the kit; however, the handbook shows a schematic of the circuit board (Fig. 5). There are also other items, including an unprogrammed DIP header and a resistor, in the kit (see Photo 1). The DIP header alters the ROM decode in the TRS-80; I'm not sure what the resistor is used for. Anyway, I didn't use either of these.

![Fig. 4. Cassette output circuit similar to the TRS-80. I added the Tri-state buffers and changed the resistor values a bit so I could wire it directly to my existing output circuit. You can use bit 2 for cassette motor control if you wish.](image-url)
Also included are three prerecorded cassettes with some very brief instructions on how to use them. One cassette contains Blackjack and Backgammon. The other two cassettes are for conversion of Level I programs and data to Level II format. I haven't had a need for these two yet, though I have used the games a few times. Finally, there is the "Level II Reference Manual," along with errata sheets, containing useful information.

The small circuit board didn't seem to fit anywhere in my system, so I wired up three sockets and just removed the ROMs. A friend had given me a poor copy of a copy containing a hex dump of the ROMs and partial disassembly of the initialization portion of the program. The first thing I did was to check the first few bytes in each ROM. They matched! Next, I ran off a hex dump of my own so I could read it without straining my eyes.

There was one more thing I wanted to do before I actually tried to execute the program contained in the ROMs. From all the information I had acquired, I knew that the TRS-80 used interrupts only when it had the expansion interface connected. Also, it only used interrupt mode 1 on the Z80 chip. Since my system would only work if I used interrupt mode 2, I searched the ROMs for any instructions that affected the interrupts. There were two: a disable interrupts at 0000H and an enable interrupts at 06E4H.

The enable interrupt instruction is actually the interrupt service routine, which is moved to RAM during the initialization. The routine merely enables interrupts and returns. This is modified when interrupts are needed. What all this boils down to is that I shouldn't have any problems with my interrupt-driven keyboard as long as I start the ROM at 0001H.

The Big Moment

So, I tried it. The screen cleared, and a short message appeared in the upper-left corner. It said, "1234567890абвгдеёжзийклмнопрстуэюя?" My computer was talking to me in Greek! There was obviously some incompatibility between the TRS-80 video driver and my TVT. The Level II manual tells me that the computer is supposed to say, "MEMORY SIZE?..." Anyway, I responded with a "32000," which appeared on the screen just as I typed it.

Hmmmm, my keyboard kludge was working alright and the numerals printed correctly, but the alphabet was in Greek! I hit the carriage return. Nothing happened for a moment, then another couple lines of Greek appeared.

You may be wondering where the Greek was coming from. Well, that is an easy one. The character generator ROM I bought for my TVT has Greek characters and some special math symbols where the control
Why limit yourself to Radio Shack® BASIC or spend hundreds of dollars on new programs and languages?

Through the phone lines, your TRS-80™ becomes a sophisticated and powerful computer. Access new languages, make vital decisions based on stock quote, earn money selling those top notch programs you write.

Two services, MicroNet™ and The Source™ open the world to the 80 user. Pick the group for your needs or both!!

MicroNet
Hookup ... $9.00
Per hour .. $5.00
The Source
Hookup ... $100.00
Per hour .. $2.75

These charges are billed to your Master Charge or VISA.

Houston Micro Computer Technologies, Inc. offers you three packages to choose from:

Package I (ST80III, Accoustic Modem, RS232C) with:
MicroNet ... $460.
The Source ... $540.
Both .. $545.

Package II (ST80I, Accoustic Modem, RS232C) with:
MicroNet ... $400.
The Source ... $480.
Both .. $485.

Package III for Mod II (HMCTERM, Accoustic Modem, Cable)
MicroNet ... $500.
The Source ... $580.
Both .. $585.

ST-80 I ($25.00) Dump Memory to Disk
Set Serial Board Allow Lower Case Letters
from Keyboard Transmit Auto Logon
Auto Line Feed Transmit Buffer to Serial: Out Port
Line Printer on Serial: Into Memory

ST-80 II ($85.00) Help Command
ST-80 III ($150.00) Auto Answer Auto Originate
HMCTERM ($200.00) Switch Status
Warm Program Restart
Job Log

To order by phone or for local dealer information call: 713/661-2005
Texas residents add 6% sales tax • MasterCharge • Visa

HOUSTON MICRO-COMPUTER TECHNOLOGIES, INC.
Home and Business Computer Specialists
5313 BISSONNET • BELLAIRE • TEXAS • 77401 • 713/661-2005
Dealer inquiries invited.
characters would normally be. Most video drivers don’t actually send control characters to the video RAM; rather, they decode them and take the appropriate action. For some strange reason, the TRS-80 video driver was changing the normal alphabetic codes to control codes before sending them to the video RAM.

The First Program (in Greek)

I know that some people think that programming computers is like talking in Greek, but this is ridiculous! The Level II manual has a short program in the back which will display all of the graphics characters. I typed the program into my computer ... in Greek! I changed it slightly, so it would print all characters not including the control codes. After I finished typing it, I listed it. Since I can’t read Greek, I couldn’t tell if I had it right or not, but at least the list command worked.

Next I typed “’TXO,’” that’s RUN, for those of you who don’t know Greek. Characters flashed on the screen, and scrolled off before I could read them. I ran it again, but I halted the computer before everything disappeared. The special characters and numerals looked good. Then there were two sets of Greek characters where the uppercase and lowercase should be. Next came the graphic characters, which looked all right.

Finally, there were all of those spaces, as everything scrolled off the screen. The Level II manual has a good explanation for the scrolling phenomenon. The codes, C0H to FFH, are space-compression codes for 0-63 spaces. So, by printing all of those codes, I had printed about 2000 spaces to the screen. I changed the program so it did not print the space-compression codes and ran it again. This time it didn’t scroll off the screen.

Video Driver Patch

I remembered something I had seen in the Level II manual, which showed a memory map, which had a detailed description of some of the RAM locations used by the Level II BASIC. I was interested in a short section of 25 RAM locations containing three device control blocks. There were control blocks for the keyboard, the video display, and the line printer. As you can see from Fig. 6, among other things, each block contains a driver address.

Now I figured all I had to do was to change the driver address to my own video driver, and I would be in business. I tried it. Nothing! I guessed that they used a different register to transfer the data byte. With this in mind, I set up a breakpoint at

Fig. 6. Level II TRS-80 memory map. (Reprinted from “Level II BASIC Reference Manual,” courtesy Radio Shack.) I have added a few addresses I have discovered.

Table: D/LEVEL II TRS-80 MEMORY MAP

<table>
<thead>
<tr>
<th>DECIMAL</th>
<th>HEXDECIMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>12288</td>
<td>3000</td>
</tr>
<tr>
<td>14302</td>
<td>37DE</td>
</tr>
<tr>
<td>14303</td>
<td>37DF</td>
</tr>
<tr>
<td>14304-7</td>
<td>37E-3</td>
</tr>
<tr>
<td>14308-11</td>
<td>37E4-7</td>
</tr>
<tr>
<td>14312-5</td>
<td>37E8-B</td>
</tr>
<tr>
<td>14369</td>
<td>37EC-F</td>
</tr>
<tr>
<td>15360</td>
<td>3C00</td>
</tr>
<tr>
<td>16383</td>
<td>3FFF</td>
</tr>
<tr>
<td>16384</td>
<td>4000</td>
</tr>
</tbody>
</table>

Key: LEVEL II BASIC ROM

<table>
<thead>
<tr>
<th>LEVEL II BASIC FIXED RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VECTORS (RST'S 1 THROUGH 7)</td>
</tr>
<tr>
<td>KEYBOARD DEVICE CONTROL BLOCK</td>
</tr>
<tr>
<td>VIDEO DISPLAY CONTROL BLOCK</td>
</tr>
</tbody>
</table>

Photo 3. Initial run of Level II BASIC. Translation:

MEMORY SIZE? 32000
RADIO SHACK LEVEL II BASIC
READY
>...
the entry point of my video driver. I was then able to determine that the data was always in register C; my driver required the data in register A. I patched this in and tried again.

Now I was getting data, but everything was on the same line! There were only carriage returns and no line feeds! It seems the TRS-80 video driver automatically generates a line feed when it gets a carriage return. As it turns out, my video driver generates a carriage return if it gets a line feed! So I checked for carriage returns and converted them to the line feeds and tried again.

Now that was much better! Everything seemed to work. Well... almost everything. The clear screen function did not work. I know this used to work when everything was in Greek. Referring again to the Level II manual, I noticed they had a table that describes all of the control codes that are implemented (Table 1).

I had two choices: modify my video driver to handle all of the control codes or try to see if I could patch their video driver so it would work. Half out of curiosity as to what they were doing and why it worked (on a TRS-80) and half because I didn't really feel like rewriting my driver, I disassembled their driver.

As I had guessed earlier, they are converting both upper and lowercase letters to control codes. The question is, "Why do they do this and how come it works?" The answer is in the hardware manual. It seems they thought it would be less expensive to use only seven bits of information in the video RAM instead of eight. They use one bit to select graphics characters or regular characters. That leaves six bits for the ASCII code.

But the ASCII code is a seven-bit code; how can that work? They cheat a little. The seventh ASCII bit is generated with a NOR gate from two other bits. This means that if they sent an actual lowercase code to the video RAM, it would be printed as a numeral or a special character. So they had to convert lowercase to uppercase. It was probably simpler to convert both upper and lowercase letters to control codes than to just change lowercase to uppercase.

Anyway, as far as they were concerned, that particular bit didn't really matter because it was not even in the RAM! Personally, I think they should have spent the extra buck on one more memory chip, then they could have had both upper and lowercase on the computer.

The final solution I came up with was to duplicate the first dozen instructions of their driver and then skip over the section that screws up the characters and jump back to their driver. The total patch is about 40 bytes.

Listing 3 shows that I have included two more small patches to the driver. The first changes the up-arrow code from 5B (which prints a left bracket[]) to 1C, so it prints an up arrow on my TVT. Radio Shack mentions in the Level II manual that some TRS-80s may print the up-arrow as a left bracket. The second allows me to bypass the space-compression codes and print 64 more of my programmable characters instead. This is accomplished by poking one byte in a memory location.

The Cassette Interface

Having gotten the video driver working made me feel very confident. I was now ready to attack the cassette interface. I placed the Blackjack tape supplied with the Level II kit in the recorder (a Radio Shack CTR-40) and typed CLOAD. I have a small tape controller box, which enables me to hear the data while the computer is reading it. This is convenient because you can tell the difference in the sound of the actual data and the leading tone on the tape.

I turned on the recorder and hit the return key. One nice thing about the TRS-80 cassette driver is that two asterisks flash in the upper-right corner of the screen when the computer is reading data. The asterisks first appear
when the actual data on the tape starts, just after the leader tone ends. They then flash as each line of program is read.

Somewhat to my surprise, the asterisks appeared and began flashing as soon as the leader tone ended. As soon as the data ended, the computer typed READY. I typed RUN. The program started executing! It asked me several questions, including my name.

After my second or third response, the program bombed. Oh well, I knew it was too good to be true. I adjusted the volume on the recorder and tried again. After several repeats of the above, the program actually ran all the way through. Ah, success at last. Next, I tried making a tape. I had to adjust the volume several times to get it to read back correctly, but this also worked.

The volume setting on the tape recorder is critical. I usually have to adjust it several times before I can get a program to load correctly.

I bought the Library 100 from The Bottom Shelf, Inc. This is a five-cassette package of 100 assorted programs for the TRS-80. I have to adjust the volume several times even to read programs on the same cassette. According to the hardware manual, the data on the cassette is saved with a checksum. This is useful for detecting load errors.

The only problem is that the Level II cassette loader program does not check the checksum and tell you when a bad load has occurred. My own cassette loader does this, and while I don’t have frequent errors, it sure is nice to know that the load is bad before you try to execute the program.

I have discovered several ways to help determine if a load is good or not. The load will be bad if the asterisks appear before or after the point on the tape where the data actually starts; if the data stops and the
Fig. 7. Cassette input circuit I am now using. The 2 khz high-pass filter is switched in to read Radio Shack tapes. The Schmitt trigger section is the same as in Fig. 4. The input latch is simpler than that shown in Fig. 4.

computer doesn’t immediately respond with READY; if READY occurs before the data ends; or if the asterisks do not flash. If the asterisks flash slowly or erratically, the load may be bad. This clue takes some getting used to since the flash rate is not the same for all programs. You have to get a feel for how the asterisks normally flash.

If any of these symptoms occur, you will have to reload the program. Several of these problems cause the computer to hang up. A reset must then be issued to get back to BASIC.

During the next few weeks, I tried all of my 100 programs. I found that some of the tapes read fairly well, while others were very poor. These tapes have the same programs recorded on both sides as a backup. I found that I couldn’t read some programs at all; I could read only one side correctly on some tapes; and I could read both copies on others. I tried reading some of these programs on a real TRS-80, and some that I couldn’t read worked.

Since my input circuit was considerably simpler than the one they use, I breadboarded their circuit and tried it. It worked much better. The volume setting was less critical, but it was still more sensitive than I would have liked. With some experimenting, I found that I only needed the high-pass filter section of their interface. Since the TRS-80 tape format was so much improved with the filter, I tried it on my 2400 baud interface. It bombed. My interface became totally useless with the active filter.

The reason I attribute to this seeming inconsistency is that the Radio Shack recording method is an amplitude modulation scheme, while my interface is a phase modulation scheme. The active filter adds too much phase distortion for my interface to work properly.

The final circuit I implemented for my cassette interface is shown in Fig. 7. The switch is to select Radio Shack or other recording methods. I’m not really sure if my circuit is more or less reliable than Radio Shack’s, but my circuit seems adequate. Most of the tapes read through with two or fewer volume adjustments. Some don’t need any adjustments. I don’t use my Radio Shack interface to save programs anyway, since my 2400 baud interface is nearly five times faster.

One feature of the Radio Shack cassette interface I haven’t built is the motor control circuit. I’ve been using my cassette interface for a year and a half, and I don’t think a motor control is necessary. I use the motor control signal to change the clock frequency and to enable the output circuit though. This works very well.

Keyboard and Printer Patches

I decided to get rid of that keyboard kludge I was using. I wrote the short driver in Listing 4. This program simply checks the keyboard status bit and either returns a null if it is not set or returns the character. It also checks for and changes two characters that are different on my keyboard than what the

Listing 3. Patch to the TRS-80 video driver eliminates the section that converts lowercase and uppercase character codes to control character codes. This permits both upper and lowercase to be printed.

Table 2. Control codes generated by the keyboard driver on the Level II BASIC ROMs. Your keyboard must generate these characters also.
The printer patch adds a few features that my driver didn't have but are assumed by the Level II ROMs. This major feature is to add extra carriage returns when a line exceeds 64 characters in length. My first printer patch did not do this, and when I listed BASIC programs that had multiple statement lines longer than 64 characters, the extra characters would not print. I also added a lines-per-page counter. When the line count is at the limit, the program waits for me to put another page in my printer.

The routine TYPOUT in List-
Program's attention is with an interrupt. If you have an interrupt-driven keyboard, you could use a program such as Listing 1 to simulate the TRS-80 memory-mapped keyboard, as I did at first. Otherwise, you need some other means of interrupting the computer. This could be as simple as a switch to the interrupt line on the Z-80. The interrupt service routine could simply change the keyboard driver address and then return to the Level II program.

There are only two situations where you could get by without any interrupts. If you actually connect your keyboard the same way as Radio Shack did, you wouldn't need interrupts. If you already have a keyboard connected some other way, re-wiring it is probably undesirable. Or, if you have a hardware front panel, you could interrupt the computer that way and change the keyboard driver address. While that is not really very difficult, it is kind of a bother to flip all those switches.

My system includes a front panel, and I didn't want to do it that way.

The method I used to interrupt the computer is a bit unusual for a microprocessor. I have a circuit in my computer that generates an interrupt if the computer attempts to read a memory address at which there is no memory installed (see Fig. 8). This interrupt saves all the registers, prints a "No Memory" message and jumps to my monitor. When the ROM tries to read the keyboard, this interrupt is generated because I don't have any memory there. From here I simply type BC, a monitor command that stands for BASIC Continue.

Listing 2 is the program. Its function is very simple—it merely sets up the new driver addresses for the keyboard, TVT and the printer. Then it restores all the registers and returns to where it was interrupted.

TVT Specifics

If your TVT is a memory-mapped device with 16 lines of 64 characters, you should have no problems getting it to work with Level II BASIC. You will have to change its address to 3C00–3FFF. If you don't have a programmable character generator, you will have to modify the TVT to implement the TRS-80 graphics. The modification should consist of only three ICs as shown in Fig. 9.

Fig. 10 shows the graphics character format. As you can see, each character cell is divided into six blocks. Each block is controlled by one bit in the video memory. The most significant bit determines if a particular character is a graphics character or a regular character. The multiplexers simply steer the bits to the appropriate positions.

This circuit will work for TVTs, which have a character cell con-

Fig. 10. Scale drawing of one character cell shows that each graphics dot is approximately twice as tall as it is wide. The video RAM bits that control each graphics dot are also shown. This format matches the circuit in Fig. 9.

LEEDEX CORPORATION

2420 E. Oakton St. • Arlington Heights, Illinois 60005 • (312) 364-1180 • TLX: 25-4786

Dealer discount available
sitting of 12 lines of eight dots. If your TVT has 12 lines of six dots, simply tie the two outputs from mux A to each of three inputs on mux B instead of the four shown. If your TVT has a different arrangement of lines and dots, you have several choices.

First, you could stretch or shrink some of the graphics dots so they fill the available lines and dots in the character cell. This may cause some graphics dots to be different sizes than other ones if the total number of lines and dots are not evenly divisible by three and two, respectively.

Second, you could modify your TVT so it has a line count divisible by three and a dot count divisible by two. This is a bit tricky and should be attempted only after you have examined the schematic and understand the timing details of the TVT. The first mod is simpler and doesn't affect the timing, but you should still closely examine the schematic of your TVT before attempting to install the change.

Third, you could forget about the graphics. This is the simplest solution, but since a lot of game programs use the graphics, you may not want to do this. If you never play games, then you don't need the graphics anyway.

I suggest you try the first solution before trying the second. The slightly different size dots will go unnoticed in many applications anyway. My own TVT has a software-selectable character cell size. I can select 13 by 9 or 12 by 8. I normally operate in the 13 by 9 mode and have found it satisfactory in many graphics applications.

If your video terminal is a completely separate unit from your computer, you obviously don't have a memory-mapped device. This means you can't use any part of the TRS-80 video driver. You will have to either write your own or modify the one you are presently using. The most important thing is to have the control characters respond correctly (see Table 1).

There are a few features in Level II BASIC that won't work with this type of setup. The graphics functions, SET, RESET and POINT, won't work, although you could send the graphics characters to the terminal like any other character. The PRINT@ and POS commands won't work either. Everything else should be fine though.

Your First Run

When you first try to run the Level II BASIC, you may have a different sequence of events than I do, depending on just how your hardware is configured. As you recall, my first run produced Greek characters. I no longer get Greek when I initialize the BASIC ROM. The first thing that appears is a "No Memory" message. This occurs when the ROM attempts to read the keyboard memory. I then type BC (BASIC Continue).

As described earlier, this changes some of the RAM locations just initialized by the ROM and returns to Level II BASIC. From here, my system behaves just like a TRS-80.

If you don't have a "No Memory" interrupt on your system, and depending on what your TVT does with control characters, your system could produce Greek characters, some strange graphics characters or absolutely nothing. The next display will depend on what you have in the keyboard memory area. If this memory is all zeros, you will only see one line of whatever characters your system is producing. If the memory is all ones (FF hex) or random data, you should see several lines of these characters continuously being written to the TVT and scrolling off the screen.

No matter what you see, you should now hit your interrupt button (control-Z, or whatever) to put you back into monitor. After typing the BASIC Continue command, you should have a blank screen.

The ROM is now waiting for your response to the MEMORY SIZE question, even though you can't see that message. Typing anything should cause it to appear on the screen. Since there may be several unknown characters in the keyboard buffer, you should first delete these with the back-arrow key. When the cursor stops moving back, all characters have been deleted. Now answer the MEMORY SIZE question as you wish. If you hit a carriage return with garbage data, the ROM will ask the MEMORY SIZE question again.

One final note: if, on your system, memory address $37EC returns anything other than 00 or FFH when read, the ROM may attempt to boot the disk. I'm not sure exactly what will happen, but it will likely get hung up and do nothing. If you have memory at that address, you should be OK, since most systems read FFH or 00 to nonexistent memory.

Conclusions

For someone with a Z-80 microcomputer who is looking for a good BASIC and would prefer to have it on ROM, Radio Shack's Level II ROM add-on kit for their TRS-80 is a good way to go. The price is reasonable—less than many BASICs that only come on cassette. If you consider the additional cost of EPROMs to put another BASIC on ROM, the Level II BASIC is less expensive than any other I know.

That the TRS-80 is the most popular microcomputer today ensures that there will be more directly compatible software than any one person can use. The ROM also contains a floppy disk bootstrap routine. This allows easy addition of one or more mini-floppy disk drives for a more versatile system. Radio Shack's TRSDOS may not be the best, but at only $14.95, it certainly is the most inexpensive disk operating system I have ever seen.

References

And now the news...

CompuServe announces the availability of international, national and regional news through your personal computer or terminal.

This up-to-the-minute service includes:
- late breaking international and national news, including features and syndicated columns
- national sports with tabular standings and box scores
- national business and financial news, including the latest stock prices and closings
- national broadcast wire
- Washington news wire
- weather updates
- and selected regional wires

Find out how your favorite football team fared or get a full account of the game in seconds. Find out how the market did today or what movies got good reviews. Check election results, key legislative votes, the latest on foreign affairs. Even background stories or predictions for the future. International events.

National news. What diplomat is throwing a party in Washington.

All this and more is yours today through CompuServe.

A 300-baud modem is all your personal computer or terminal needs to access all the services available via local phone calls in more than 175 North American cities from 6 PM to 5 AM weekdays, weekends and most holidays. And the basic charge is only $5.00 an hour, billed in minute increments, to your charge card. Want more information? Write.

CompuServe
Dept: K
Personal Computing Division
5000 Arlington Centre Blvd.
Columbus, Ohio 43220

Microcomputing, August 1980 67
64K Memory For the H8

Last month's article continues with construction and checkout of the memory.

Myron J. Seibold
PO Box 5131
Santa Ana, CA 92704

Last month, part 1 described the actual design of a 64K single card semiconductor memory for the Heathkit H8 computer. Now let's look at its construction and operation.

Power Supply Circuits

The three power supply voltages required by the memory are easily obtained from the H8 computer. The unregulated H8 voltages, -18, +8 and +18, are converted to -5, +5 and +12 volts, respectively, using standard three-terminal voltage regulator chips (see Fig. 1).

The power supply current requirements are small: -5 volts at 10 mA, +5 volts at 1.0 amperes and +12 volts at 150 mA. The +5 volts should be supplied using four regulators driving separate loads, none of which should draw more than 500 mA. The integrated circuits should be split into four groups, each connected to a separate +5 volt power supply regulator. This is done to permit mounting the regulators on a small heat sink. The memory chips will constitute one of these four groups.

The average (dc) currents supplied by the +12 volt and -5 volt regulators are quite small. The peak currents these voltages must supply on the memory board, however, are large and are many times greater than the dc currents in both cases.

The peak current demand is supplied by the filter capacitors in the memory chip array. A large amount of distributed capacitance is required for this purpose. You must carefully follow the layout rules for the memory chip array. These currents must be supplied when needed, without inducing spurious signals. During refresh, these currents are drawn by all of the memory chips simultaneously.

Memory Chip Layout Rules

The wiring board layout requirements for dynamic memory chips are exacting. The memory chips themselves must be arranged together in a compact group. All three power supply voltages, as well as ground, should be respectively cross-connected at each memory chip (see Fig. 2). A pair of high-quality ceramic power supply filter capacitors should also be installed with each memory chip.

The memory chip ground connections should form a net with a memory chip at each connected intersection. The same is true for connections to +12 volts and -5 volts. The +5 voltage should be connected in a similar manner, but is not as critical and is used only to provide TTL compatibility. The +5 voltage is not required to retain data in the memory chips.

High-quality ceramic capacitors are essential to filter the
memory chip power supply voltages. Capacitor quality is directly related to price. Inexpensive capacitors will not work for this purpose. A capacitance of 0.1 μF should be used for each capacitor. The two capacitors should be located as close to each memory chip as possible. The CK05B1X10K capacitor is suitable for this purpose and is recommended for its small size.

The other memory circuits should be laid out in a similar manner, although the layout requirements are not as strict. Only a single power supply voltage is used, and only one filter capacitor need be used for every three or four integrated circuit chips. A good ground structure, however, is always important.

Assembling the Memory Module

This memory was physically assembled in three parts on a retaining backboard identical in size to the printed circuit boards used in the H8 computer (see the memory layout drawing, Fig. 3). The memory chips and their address drivers were easily mounted on a printed circuit board cut from a surplus commercial memory board. I have a limited supply of surplus memory boards of different types from which suitable memory chip arrays may be cut. These printed circuit board pieces typically hold all 32 memory chips, about 70 filter capacitors, four resistor modules (or 32 1/8 Watt resistors) and four integrated circuit address and control driver chips. Using these boards is convenient and ensures that the memory chip array is properly wired and filtered.

The memory chips should be installed on these boards in high-quality sockets. These sockets will facilitate troubleshooting and memory chip replacement. The memory chip array can also be constructed on regular wiring board, such as Vector board, following the layout rules previously given. Again, sockets should be provided for the memory chips.

The remaining circuits were separately wired on a small piece of Vector board. The Vector board hole spacing is 1/10 inch in a square array. Small-size Vector pins are used with this board. Thirty integrated circuits can be laid out in a 6 x 5 chip array with ample space around them for discrete components.

Wires-wrap sockets are recommended for the integrated circuits. These sockets can be glued to the Vector board and the leads cut to a convenient length for wire (solder) connections. Either 1/4 Watt or 1/8 Watt resistors may be used. The timing capacitors normally have a rating of at least 500 volts. Photos 1 and 2 of the memory module may differ slightly from the layout shown in Fig. 3. The layout is small, and component placement is not critical. Wiring connections should always be as short as possible.

Wires must be soldered to the memory chip printed circuit board for connection to the circuits on the Vector board. A few ground wires should always accompany any groups of signal wires. From the bottom of the memory chip array, for example, a bundle of eight data input lines, eight data output lines and four ground lines was brought out (see Photos 1 and 2). The memory chip array printed circuit board and support circuit Vector board were mounted to the backboard using short standoff spacers. The two boards were then wired together. The voltage regulators were mounted to a standard Heath metal-mounting bail at the edge of the backboard. This bail acts as a heat sink for the voltage regulators. It is a poor heat sink, and four +5 volt regulators were used to reduce the regulator junction temperatures. The bail gets hot and may reach 150 degrees Fahrenheit (65 degrees Celsius).

The single +12 volt regulator can also be mounted on the bail. Silicon grease should be used when mounting the regulator chips. The -5 volt regulator does not get hot and need not be mounted on the heat sink. The bus connectors should be mounted directly on the Vector board. A pair of standard Heath gold-plated connectors should be used with a tie bar. The connectors should be well secured to the Vector board. Cut-down Vector pins can be used as solder eyelets for this purpose.

The memory can be assembled and operated in smaller versions than 64K. In this case, you can build a complete 64K memory with memory chips installed in only one or two rows of sockets. The memory will work with a single row of eight memory chips. This should not entail much expense and will provide 16K of memory capacity. Memory capacity can then be increased in 16K increments up to 56K by simply installing additional rows of memory chips.

A note of caution: the memory chips are MOS integrated circuits and are susceptible to damage by static electricity.

Photo 1. Full view of the memory module. Note light reflected from the array of 32 memory chips. All information is stored in these chips. The memory chips themselves occupy less than one half of the memory module. The remaining space is occupied by the memory chip support circuitry. This is characteristic of most dynamic memory designs.

Fig. 2. Memory chip power-ground cross connections.

Microcomputing, August 1980 69
They must be handled carefully, observing the precautions normally taken when using MOS devices. The memory chips must be handled one at a time and stored on a conductive foam pad when removed from the memory module.

Operation

When the memory is operating properly, the front panel (monitor program) can be used. It should be possible to load and store information anywhere in the memory address range from 8K to 64K. It is a heady experience loading and retrieving data in the higher address locations for the first time! All the effort in building and debugging the memory now seems worthwhile!

The H8 memory test routine should now be entered and run to ensure that the entire memory is functional and that there are no defective memory chips. The Heath H8 memory test routine is listed on pages 61 and 62 of the H8 operating manual. It is also listed and described in detail on pages 9 through 14 of the operating manual.

To test 56K of memory, the data placed in address location 040 105 (split octal notation) of the test routine should be changed from 057 to 377. This raises the upper memory test limit from 12K to 64K. (The memory test always begins at 8K.) To test smaller amounts of memory, the upper memory limit can be varied accordingly. See page 0-58 of the H8 software reference manual for the high-byte address boundaries for 4K decimal increments of memory capacity. The high-byte addresses are octal numbers and should be decremented by one (except in the case of 377) to set the memory boundary. For example, 200 - 1 = 177 sets the upper memory boundary at 32K, for a memory capacity of 24K.

The memory test begins at address 040 160, rather than at the 8K boundary of 040 000. Also, the memory test ends at address 260, rather than the upper limit of address 377. These small amounts are excluded from the test because they are needed to operate the front-panel monitor program, as well as administer the test itself.

If the memory test runs successfully, it can be assumed that these excluded locations are also good. However, these locations can be thoroughly tested by interchanging RAS lines on the memory module. It is easy to do. RAS 0 and RAS 3 are interchanged with RAS 1 and RAS 2, respectively. This physically changes the memory chip rows responding to given address inputs in 16K blocks.

The memory test routine is primarily used to locate defective memory chips and certain kinds of problems in the memory chip array wiring. If there are problems in the memory chip timing and control circuits, the front-panel monitor program will not run.

I have a Heathkit H8 computer, H8-5 interface module, H9 video terminal and a pair of cassette units. The new 64K memory module works perfectly with this system. It certainly does more than the Heathkit 8K H8-1 static memory module it replaces. The computer can now be filled with interface boards, rather than with memory modules. This should eliminate any future need for a computer expansion chassis.

This memory has also been tested in an H8 computer using the H17 floppy disk system. The memory works perfectly with the floppy disk, and the large capacity of the memory effectively eliminates the need for a second floppy disk drive unit for disk copying. Single drive disk copying proceeds very rapidly when using a large memory.

Troubleshooting the Memory Module

This design is proven. Therefore, you should encounter a minimum number of problems in getting the memory to work—at least with a Heathkit H8 computer. In some cases, what appears to be memory problems may actually be problems in the computer hardware or software. It is now well established that the H8 is somewhat unreliable. The sockets on the voltage regulator leads on every H8 module should be removed, and these leads should be soldered directly to the voltage regulator terminals. It would also be worthwhile to replace the tin-plated motherboard connectors with gold-plated connectors of the same type.

Socket and connector problems occur unpredictably at infrequent intervals. Individual sockets can be tested by physical manipulation while running a program. Programs should run without interruption while sockets, or printed circuit boards, are flexed or tapped. A vibrator (use an engraving tool with a plastic ball on the point) set at low frequency can be very useful in this case.

Problems can also exist in the computer software. When running Heath cassette BASIC, you must software-set the upper memory limit below 40K. You can use the software configuration option to do this. Alternately, the RAS-3 line to the last row of memory chips can be lifted and the memory run as a 40K version. The RAS-3 memory chip line should be connected to a +5 volt bias resistor in this case.

Be very careful not to short connector pin 2 and 3 together on the bus when making measurements. This will destroy a number of integrated circuits on several computer modules. When wiring the memory module connector, you should note that the first pin is 0, not 1. If the connector is miswired, −18 volts will be placed on pin 3, with the above-mentioned consequences.

If the front-panel monitor program won’t run, there is a problem in the memory chip timing and control circuits. Check all six power supply voltages first (+5 volts from each of the four regulators, +12 volts and −5 volts). An oscilloscope should then be used to check circuit operation. A dual-trace or external sync oscilloscope is required to make differential timing measurements.

Frequently, you can provide signals to the memory interface to check memory circuit operation when the front panel does not operate properly. Repeated pushing of front-panel buttons (especially reset) should set this up. You should first check all timing adjustments wherever possible (see timing specification, Fig. 4, part 1). Then you can check circuit operation for wiring errors and defective parts. It may be helpful to interchange RAS lines between rows of memory chips to

Fig. 3. Memory module layout.
HUNDREDS OF ROLLS ROYCES, YACHTS, AIRPLANES & PREMIUM PROPERTIES

FOR SALE IN

THE ROBB REPORT

THE ROBB REPORT, published monthly, is the market place for the buyer, seller and trader who appreciates the finer things in life. Listed for sale are hundreds of new and previously owned antique and classic motor cars, yachts, airplanes, premium properties horses, art, firearms and antique treasures. Complete descriptions and photographs are included, as well as the owner's name, address and telephone number.

A 12 month subscription to THE ROBB REPORT is $45.00*. Send your check to the address below, or you may charge your subscription to Visa, Master Card, American Express or Diners Club by calling 404-256-9470 and giving your card account number and expiration date.

THE ROBB REPORT
THE MAGAZINE FOR CONNOISSEURS

THE ROBB REPORT / P.O. Box 720317 - TF / Atlanta, Georgia 30328

*Add $30.00 for overseas subscription. Prices subject to change without notice.
locate or bypass rows with bad chips.

When adapting this design to another computer interface, you may have to devise and perform circuit modification experiments in order to obtain information. This is often necessary to locate problems that cannot be found using an oscilloscope. Interfacing involves both hardware adaptations to the computer bus and possible changes in the memory timing.

If you suspect a memory-read-access-time problem, RDYIN can be asserted for every memory cycle to check this. To accomplish this connect US8-1 to a +5 volt bias resistor or US8-2. If the memory can be made to work with this modification—but not otherwise—the memory access time may be excessive.

To reduce access time use faster memory chips. The 4116-2 is 50 nanoseconds faster than the 4116-3 (see Table 1, part 1). Reducing the respective delays for address multiplexing and the assertion of CAS is required to take advantage of the faster memory chips. This should be done if the 4116-2 memory chip is used. Each of these delays can be reduced by one half when using the 4116-2 memory chip.

A memory-access-time problem can be solved, of course, by simply asserting RDYIN for every memory cycle. Using RDYIN with each memory cycle, however, is undesirable, as this will cause the computer to run more slowly. I experienced no problem with access time using the H8 computer with either the 4116-3 or the 4116-4 memory chips. I used the 4116-3 to provide an adjustable margin of reliability.

The refresh cycle must terminate before a computer memory cycle can begin. Access time will be adversely affected if the refresh cycle delays the beginning of a computer memory cycle when refreshing in the transparent mode. The input at U54-9 must go high before the input at U54-10 goes high to begin a computer memory cycle, in this case. This is ensured by the 1400 nanosecond maximum specification (Fig. 2, part 1).

Once the front panel monitor program is running, you can use the Heath H8 memory test to test the memory chips. This test will locate about 90 percent of all memory chip problems. No memory test can locate all memory problems. Dynamic memories are also susceptible to soft (nonrepeatable) errors caused by alpha particle radiation from the memory chip case materials. Fortunately, these errors are usually infrequent.

Heathkit H8 owners who would like to build their own memories can purchase printed circuit boards from the author. Fully assembled and kit versions of this memory in several different (de-populated) memory sizes are available.

DR. DALEY presents

Software for the PET and the APPLE

Dr. Daley's software is proud to announce the release of a package of our best selling programs.

These programs, regularly retailing for over $400, have been assembled into a single package for only $69.95* Included is our best selling TREK3, CHECKBOOK, and a mailing list, tutorials, games and puzzles for every member of the family. All attractively packaged in an album.

50 PROGRAMS ONLY $69.95

*Disk version $10 extra.

Charge your order to

MC/VISA

Your order will be shipped within four business days from receipt.

DR. DALEY, 425 Grove Avenue, Berrien Springs, Michigan 49103

Phone (616) 471-5514 Sun. thru Thurs., noon to 9 p.m. eastern time.
NEW! TPM* for TRS-80 Model II
NEW! System/6 Package
Computer Design Labs

We have acquired the rights to all TDL software (and hardware). TDL software has long had the reputation of being the best in the industry. Computer Design Labs will continue to maintain, evolve and add to this superior line of quality software.
—Carli Galletti and Roger Amidon, owners.

Software with manual/Manual Alone

All of the software below is available on any of the following media for operation with a Z80 CPU using the CP/M* or similar disk operating system (such as our Z80-CP/M* for TRS-80 CP/M (Model I or II) for 8" CP/M (soft sectored single density) for 5½" CP/M (soft sectored single density) for 8½" North Star CP/M (single density) for 5½" North Star CP/M (double density)

BASIC I

A powerful and fast Z80 Basic interpreter with EDIT, RENUMBER, TRACE, PRINT USING, assembly language subroutine CALL, LOADGO for "�"NEXTRA, COPY to move text, EXCHANGE, KILL, LISTFILE, error interrupt, external Interrupt, GOSUB, GOTO drive, many ASCll mnemonics, and binary format, EXPAND, Move, much, more. It runs in a little over 12 K. An excellent choice for games since the precision was added to 7 digits in order to make it one of the fastest around. $49.95/$15.

BASIC II

Basic I but with 12 digit precision to make power available to the business world with baby's sight sacrifice in speed. 40 times faster than most other Basics (even those with much less precision). $99.95/$15.

BUSINESS BASIC

The most powerful Basic for the business applications. It adds to Basic II random or sequential disk files in either fixed or variable record length, simultaneous access to multiple disk files, primary command to probe your access to source code, global editing, add/delete, functions, and disk file maintenance capability without leaving Basic (list, rename, or delete). $179.95/$25.

ZEDIT

A character oriented text editor with 26 commands and macro capability for stringing multiple commands together. Includes are a complete array of character move, add, delete, and display function. $49.95/$15.

Z80 Text Editing Language - Not just a text editor. Actually a language which allows you to edit text and also write, save, recall programs which manipulate text. Command include conditional branching, subroutine calls, iteration, block move, expression evaluation, and much more. Good for value registers and 10 text registers. Be creative! Manipulate text with commands you write using Zelt. $79.95/$25.

Z80 Text Output Processor which will do text formatting for manuals, documents, and other word processing jobs. Works with any text editor. Does justification, page numbers, 1000/4000 baud cassette tape interface, footnotes, for 2K of RAM, 3-2708/2716 EPROMs or ROM, jump on reset circuitry. Board price $49.95/$20.

MACRO I

A macro assembler which will generate relocatable or absolute code for the 8080 or Z80 using standard Intel mnemonics plus TDL/Z80 extensions. Functions include program loaders, 16 listing controls, 54 pseudo-ops, 11 arithmetic/logical operations, local and global symbols, chaining files, linking capability with optional linker, and recursive/reiterative macros. This assembler is so powerful you'll think it is doing all the work for you. It actually makes assembly language programming much less of an effort and more creative. $79.95/$20.

MACRO II

Expands upon Macro I's linking capability (which is useful but somewhat limited) thereby being able to take full advantage of the optional Linker. Also a time and date function has been added and the listing capability improved. $99.95/$25.

LINKER

How many times have you written the same subroutine in each new program? Top notch professional programmers compile a library of these subroutines and use a Linker to tie them together at assembly time. Development time is thus drastically reduced and becomes comparable to writing in a high level language but with all the speed of assembly language. So, get the new C Linker and you'll have this fraction of the time it took before. Linker is compatible with Macro I & II as well as TDL/Xitan assemblers version 2.0 or later. $79.95/$20.

DEBG I

Many programmers give up on writing in assembly language even though they know their programs would be faster and more powerful. To them assembly language seems difficult to understand and follow, as well as being a nightmare to debug. Well, not with proper tools like Debug I. With Debug I you can easily follow the flow of any Z80 or 8080 program. Track the program one step at a time or 10 steps or whatever you like. At each new step you will be able to see the instruction executed and what it did. If desired, modifications can then be made before continuing. It's all under your control. You can even skip displaying a subroutine call and up to seven breakpoints can be set during execution. Use of Debug I can pay for itself many times over by saving you valuable debugging time. $79.95/$20.

DEBG II

This is an expanded debugger which has all of the features of Debug I plus many more. You can "trace" (i.e. trace a program until a set of register, flag, and memory conditions occur). Also, instructions may be entered and executed immediately. This makes it easy to learn new instructions by examining registers/memory before and after. And a RADIx function allows changing between ASCll, binary, decimal, hex, octal, signed decimal, or split octal. All these features and more add up to give you a very powerful development tool. Both Debug I and II must run on a Z80 but will debug both Z80 and 8080 code. $99.95/$20.

ZAPPLE

A Z80 executive and debug monitor. Capable of search, ASCll put and display, read and write to I/O ports, hex math, breakpoint, execute, move, fill, display, and more in Intel or binary format tape, and more on disk.

8080 version of Zapple

NEW! TPM now available for TRS-80 Model III

TPM

A NEW Z80 disk operating system! This is not CP/M*! Its better! You can still run any program which runs with CP/M but unlike CP/M this operating system was written specifically for the Z80 and takes full advantage of its extra powerful instruction set. In other words its not warmed over 8080 code! Available for TRS-80* (Model I or II), Tarbell, Xitan DDDC, SD Sales "FLOPPY", North Star (S&DD2) and Digital (Micro) Systems. $79.95/$25.

SYSTEM MONITOR BOARD (SMB II)

A complete I/O board for 5-100 systems. 2 serial ports, 1000 baud, auto-rx, 8 parallel ports, 16 serial ports, 16 controlling ports, 54 pseudo-ops, 11 arithmetic/logical operations, local and global symbols, chaining files, linking capability with optional linker, and recursive/reiterative macros. This assembler is so powerful you'll think it is doing all the work for you. It actually makes assembly language programming much less of an effort and more creative. $79.95/$20.

ORDERING INFORMATION

Visa, Master Charge and C.O.D. O.K. To order call or write with the following information.
1. Name of Product (e.g. Macro II)
2. Media (e.g. 8" CP/M)
3. Price and method of payment (e.g. C.O.D.) include credit card info. if applicable.
4. Name, Address and Phone number.
5. For TRS orders only Indicate I/O for TRS 80, Tarbell, Xitan DDDC, SD Sales (5% or 8%), ICOM (5% or 8%), North Star (single or double density) or Digital (Micro) Systems.
6. N.J. residents add 5% sales tax.

Manual cost applicable against price of subsequent software purchase in any item except for the Osborne software.

For information and tech queries call 609-599-2146

For phone orders ONLY call toll free 1-800-327-9191

Ext. 676
(Except Florida)

OEMS

Many CDL products are available for licensing to OEMs. Write to Carli Galletti with your requirements.

* Z80 is a trademark of Zilog
* TRS-80 is a trademark for Radio Shack
* TPM is a trademark of Computer Design Labs. It is not CP/M*
* CP/M is a trademark of Digital Research

DEALER INQUIRIES INVITED.
Surplus "Selectric" Special!

"Selectric" Typewriter Terminal

Just imagine; an IBM Model 725 "Selectric" typewriter built into a complete table-top RS-232 terminal! These surplus terminals were formerly on lease and appear to be in good condition (we test 'em to make sure the printer is functional)! These fantastic BCD-Coded terminals feature:

- 15" Carriage
- 725 'Selectric'
- RS-232 I/O
- 92 Columns
- 132 columns
- 86 Character Set
- 6 bit BCD Code
- Attractive Case
- Upper/Lower Shift

Only $469.00!

While we will check out each unit, we MUST offer these unique bargains "AS-IX": Meaning they may need some service but are basically operational. Add $20.00 for packing crate, you pay shipping on delivery.

Also includes: Type ball, I/O circuit boards, power supply & some data. Sorry, no power cord included.

--- Special Offer!! ---

Buy 2, take 20% off the full price— 2 for $750.00

You Pay Only:

--- Selectric"* Printer Maintenance Manual

Just $10! We now have available some excellent printer maintenance manuals that are the most thorough manuals we've seen. Well worth the price!

* Selectric is an IBM Trademark

CFR Associates, Inc.

P.O. Box 164

Newton, N.J. 07860

(617)372-8536

WP-6502

A Very Fine Word Processor

For Ohio Scientific

Tape (C1,C2,C4) $75
5" Disk (C1,C2,C4) $75
8" Disk for 65D $75
8" Disk for 65U $125
8" 65D & 65U $125

Brochure: Free

Dwo Quong Fok Lok Saw
Box 4196, Grand Central Station
New York City, N.Y. 10163
(212) 685-2188

Here's A Better Way to Create/Editor Your North Star Basic Programs

N-Bus has a unique interactive GLOBAL line editor, with powerful source preparation/editing features, unmatched anywhere at ANY PRICE!

- Interfaces with ANY release 4 or later BASIC by running a supplied program.
- Co-resident with BASIC — merely type the command "EDIT" without a line number.
- All N-BUS programs are assembly language fast!
- Line scrolling plus these exciting commands:
 - Edit Mode • Input Mode • Bottom • Top • Basic • Bye • Append • Next • Print • Copy (lines) • Delete (lines)
 - Scale • Prompt • Change • Change (global) • Erase Columns • Locate • Locate (global) • Tab • Tchar
 - Window • Window Next • Window Previous • View • Insert • Go (to a line) • Move (lines) • Device

N-Bus also includes BPAT, a program print/variable cross-reference utility featuring an ultra-fast shell-Metzner sort, BPAK, a source program packer and RE, a file rename program. If you use North Star Basic, you owe it to yourself to ORDER YOUR COPY OF N-BUS today.

And Only $69 --- plus $1.50 postage

Calif. Res. add 6% tax. No C.O.D.'s please. Send check or M.O. or VISA or Master Charge accepted.

Software Systems

1269 Rubio Vista Rd. • Altadena, Ca. 91001

JPC Products For

6800 Computers

High Performance Cassette Interface

- Fast: 4800 Baud Loads 4k in 8 Seconds!
- Reliable: Error Rate Less Than 1 in 10^8 Bytes.
- Convenient: Plugs Directly Into The SWTPC.
- Plus: A Fully Buffered 8 Bit Output Port Provided.
- Low Cost: $39.95 For Complete Kit.

Optional: CFM/F File Manager.

Manual & Listing $19.95

(For Cassette Add) $6.95

Terms: CASH, MC or VISA. Shipping & Handling $3.00

Order Phone (505) 294-4623

JPC Products

P.O. Box 5615

Albuquerque, N.M. 87185

Microcomputing, August 1980
More additional... Easy Extender: $895.00 VISA it: Switch per Reader for Power Transformer Design more power avoid Wide life All CCI-money set CCI-800 8” CCI-5V4” FRANCHISE PET, Retail Products one DRIVES and our Service 189 1 CO™ operating supply heat 00 to 1 180 ORIG, Stores: Mon.-Fri. 10AM-6PM (EST) Dept.SK TRS-80* (197K Bytes) (102K Bytes) (105-125 Vac.) 1/2 (1/4 Meg Bytes) separately. increased for easy field conversion from drive 0 to drive 1, 2, or 3. Simpler, more increased ventilation for additional cooling: Top, side and bottom vents mean lower operating temperatures for longer life. Switch designed with high current ratings (10 AMP). 3-wire grounded line cord for added operator safety.

Operating Systems
NEWDOS Plus for 51/4", 40 and 77 Track Drives—with over 200 modifications and corrections to TRSDOS $110.00 CP/M for Model I, Zenith $150.00 CP/M for Model II, Altos $250.00

Software by SE&M Systems
INSEQ-80*—Indexed Sequential Access Method (ISAM) for the TRS-80 Model I.

Four machine language programs that can be called from your BASIC program via USR functions to access records either sequentially or randomly. The INSEQ-80 programs maintain all indexes and chains for you. Includes reorganization utility to consolidate files. $49.95 Professional Business Software using INSEQ-80 for the TRS-80 Model I and Zenith Z89.

Accounts Payable, Accounts Receivable, General Ledger, Payroll Inventory per package $99.00 per package $125.00

TO ORDER CALL TOLL FREE 1-800-343-6522 TWX: 710-248-1796

Massachusetts residents call 617/242-3350 For detailed technical information, call 617/242-3350. Freight Collect, F.O.B. Charlestown.

*TRS-80 is a trademark of the Tandy Corporation

Computer City

175 Main Street, Dept. 8K, Charlestown, MA 02129 278

Hours: 10AM-6PM (EST) Mon.-Fri. (Sat. till 5).

Products also available from: Radio Shack, NEC, Centronics, Paper Tiger, TI, Altos, MPI, Zenith, Mattell, ATARI, PET, OKIDATA, Apple, Eaton/LRC.

FRANCHISE AND DEALER (NATIONAL/INTERNATIONAL) INQUIRIES INVITED
Retail Stores: MA: Burlington, Charlestown, Framingham, Hanover NH: Manchester Ri: Providence

Microcomputing, August 1980 75
On Time and Space

North Star users can save memory and run time with this program.

The purposes of this article are to present a program I wrote to help reduce the size of North Star BASIC programs, and to describe a software product that not only saves space but reduces run times of almost any North Star BASIC program. (The North Star floating-point board allows use of a slightly smaller interpreter and, in my experience, improves calculation times, but for many it is an unaffordable luxury.)

One way to reduce program size is to remove all blanks from a program. A program to do this is on the NSSE Disk 2. You can save additional space by removing remarks, although this may not be desirable.

CHANGE

Two-character variable names use one more byte at each occurrence than do one-character names. I wrote the program CHANGE Listing 1 to convert two-character to one-character variable names in North Star BASIC. It uses as data a BASIC program on file. The program requests the file name and then information about the variable names to be changed.

In Segment A, any number of variables may be altered. A two-character variable name may be altered to a single character variable plus a blank. In addition, one-character names may be changed to other one-character names.

Since North Star BASIC allows variable names consisting of only one letter and, optionally, one integer, conversion of programs from another BASIC sometimes requires the

Listing 1. CHANGE, a program that allows variable name changes and compaction in North Star BASIC programs.

```
10 GOTO 910
20 READ#0,4K,4N1,4N2\REM READ NO CHAR'S AND STATEMENT NO
30 WRITE#1,4K,4N1,4N2,NOENDMARK
40 LET K=\REM LET A=O\LET A=0
50 IF K=1 THEN 830
60 LET P=0
70 N0=N2*256+N1
80 FOR I=1 TO K-3\REM READ LINE
90 READ#0,4A9(I)
100 NEXT I
110 IF O=2 THEN 580
120 REM ..............................SEGMENT A
130 L5=O\L5=0
140 FOR J=1 TO K-3
150 IF J=1 TO N9
160 A1\O\A1=0
170 Q=9\REM REMARK AND "QUOTE" FLAG
180 L5=J(L)+L3
190 VS=\REM VS=5(L+1,L5)\REM LEN(VS)
200 W=\REM W=5(L+1,L5)\REM LEN(W)
210 FOR M=1 TO L5\REM SET UP FOR NAME LENGTH
220 V(M)=ASC(VS(M,M))
230 W(M)=ASC(WS(M,M))
240 NEXT M
250 FOR I=1 TO K-3
260 IF A9(I)=143 THEN R=1\REM REM
270 IF A9(I)=92 THEN R=0\REM SLASH
280 IF A9(I)=36 AND R=0 THEN Q=Q\REM QUOTE
290 IF Q=1 OR R=1 THEN NEXT I\REM INSIDE REM OR QUOTE
300 IF A1=154 OR A2=154 OR A1=150 THEN NEXT I\REM SKIP LINE NOS
310 IF A9(I)=138 THEN NEXT I\REM LOOK FOR BYTE ACCESS
320 FOR L=1 TO L4
330 IF A9(I)=V(L) AND Q=1 AND R=0 THEN 400
340 IF A9(I)=92 THEN R=0\REM SLASH
350 IF A9(I)=143 THEN R=1\REM REM
360 EXIT 510
370 IF A9(I)=34 THEN Q=Q\REM QUOTE
380 I=I+1
390 NEXT L
400 GOTO 420
420 I=1
430 IF A9(I+1)=44 OR A9(I+1)=41 THEN 460
440 IF A9(I+1)=13 THEN 460
450 IF I<K-4 AND A9(I+1)<32 AND A9(I+1)>91 THEN 530
460 FOR L=1 TO L4
470 A9(I+1-L)=W(L)
480 NEXT L
490 IF F=0 THEN I
500 IF F=0 THEN 10611,N8.TAB(15),
510 F=1
520 IWS","
530 IF I<3 OR I>K-3 THEN 550
540 NEXT I
550 NEXT J
560 IF Q=1 THEN 750
570 REM ..............................SEGMENT B
580 I=0
590 GOTO 2\REM REMARK AND "QUOTE" FLAG
600 FOR I=1 TO K-3
610 A2\REM A1\REM SAVE PREV
620 A\REM A9(I)\REM GET CHARACTER
630 IF A1=150 OR A2=150 THEN 660\REM IGNORE STATEMENT NUMBERS
640 IF A = 32 AND O=1 AND R=0 THEN 730\REM SKIP BLANK
650 IF A = 128 AND Q=1 AND R=0 THEN 730\REM SKIP LET
660 IF A<92 THEN 680
670 GOTO \REM \REM NEW STATEMENT ENCOUNTERED
670 IF A=143 THEN R=1
690 IF A=34 ANDR=0 THENQ=Q
700 I=I+1
710 A9(I)=A
```
FIBONACCI

Dr. A.M. Microcomputing, A.Z.

REM TEST

REM LET I,A9(1),NOENDMARK

REM CORRECT CHAR COUNT IF NECESSARY

REM BRING POINTER UP

IF O=2 THEN 20

GOTO 20

10 REM PROGRAM TO PRINT THE FIRST N2 FIBONACCI NUMBERS

20 "FIBONACCI NUMBERS!"

30 "FIBONACCI NUMBERS!"

40 INPUT "HOW MANY NUMBERS DO YOU WANT? ",N2

50 LET N=0,REM LET INCLUDED FOR TEST OF "CHANGE"

70 LET A9=0

80 OPEN#1,\READ1115,1,\REM PRINT A9

90 LET N=N+1

100 B=1

110 1B,

120 N=N+1

130 C=A+9

140 1C,

150 N=N+1

160 IF N=N2 THEN 200

170 A9=B

180 B=C

190 GOTO 130

200 "FIBONACCI NUMBERS HAVE BEEN PRINTED."

220 END

READY

Listing 2. FIBON, a program to print Fibonacci numbers.

PROGRAM TO CHANGE VARIABLE NAMES

IN NORTH STAR BASIC PROGRAMS (RELEASE 4)

WRITTEN BY DR. D.J. YATES

BOTANY DEPARTMENT

UNIVERSITY OF QUEENSLAND

ST. LUCIA, 4067

QUEENSLAND, AUSTRALIA.

WHAT IS BASIC PROGRAM FILE NAME ?FIBON

YOU MAY: (1) Alter Variable Names

(2) Delete Blanks and 'LET'

(3) Perform both (1) and (2)

HOW MANY VARIABLE NAMES DO YOU WANT TO CHANGE ? 3

VARIABLE NO 1 = A9 TO BE REPLACED BY M

VARIABLE NO 2 = N2 TO BE REPLACED BY Z

VARIABLE NO 3 = C TO BE REPLACED BY Z

STATEMENT VARIABLE

M

A

Z

conversion of two-letter names before a program is run. It is

often simpler to enter a "foreign" program "as is" and

then alter all occurrences of the "illegal" names at one time.

This may be done with CHANGE. A danger in this program is that it

will change one variable (B1, for example) to another (B) if in-

structed to do so. However, the interpreter will not then

distinguish between the original occurrences of B and the "new"

occurrences, and the program may be ruined.

By requesting the program to change to the same name all oc-

currences of variable name X or the foreign function LEFT or

MID, CHANGE will list all occurrences of the name or function

against the line numbers in which they occur, thus simplifying

editing. Provided syntax is correct, none of the above

changes is made within quotation marks or REM statements.

Segment B of CHANGE is based on the program by L.

Steiner on NSSE 2. It allows removal of all blanks that

exist after the variable name changes are made. In addition, it

removes the nonessential reserved word LET from the pro-
The end of processing the program statements, the abbreviated program is written back to the original file. Minor modification allows the output file to be different from the input file. It is also easy to delete the optional GOTO in statements such as IF... THEN GOTO 123.

Example

Listing 2 is a program, FIBON, in its "raw" state before being processed by CHANGE. Listing 3 represents the output produced by CHANGE when FIBON is processed. Listing 4 is FIBON after being processed by CHANGE, with the altered names referred to in Listing 3. Note that names N2 and A9 in lines 10 and 80, respectively, are not changed. As indicated in Listing 3, blanks and LETs are deleted to save 39 bytes, about 11 percent of the total for the original program, which did not have excessive blanks, LETs or two-character names. Listing 5 indicates the method of finding all occurrences of the variables K9 and F in CHANGE itself, as well as changing B for A9. You can save a significant number of bytes by using the techniques described. Listing 6 represents a portion of CHANGE after being processed by itself.

Changes and Deletions

On file, and in memory, a North Star BASIC statement is stored as a string of hexadecimal numbers. The first is a character count (N) between 0 and 255. The second two numbers carry the line number. The remaining N-3 numbers are the code representing the rest of the statement. The reserved words are not stored...
Table 1. North Star BASIC reserved words and their decimal number representations.

I	146	DIM	139	OPEN	151	
+	224	ELSE	180	OR	237	
*	244	END	141	PRINT	130	
/	229	ERSET	159	PRINT	130	
=	231	EXAM	218	PSIZE	174	
<=	244	EXP	15	READ	133	
=>	240	FOR	222	REM	143	
!=	241	FILL	149	REP	168	
>	246	FOR	26	RESTORE	142	
>	=	239	GOSUB	137	RND	206
ABS	236	IF	13	SAVE	170	
ARD	236	INP	217	SCR	163	
ARC	218	INPUT	134	SIN	203	
AUTO	164	INPUT	134	SIN	203	
CALL	205	LENS	204	SORT	196	
CAT	175	LET	128	STEP	176	
CHAIN	155	LINE	156	STOP	140	
CHRS	181	LIST	161	STR	184	
CLOSE	152	LOAD	165	TAB	179	
COST	166	LOG	22	THEN	178	
COS	220	MEMSET	162	TO	177	
CREATE	156	NEXT	113	TIP	223	
DATA	135	NORMARK	185	VAL	183	
DEF	145	NOT	247	WRITE	153	
DEL	173	NSAVE	169	X	154	
DESTROY	157	ON	147	Y	154	

as their full ASCII representations, but in an abbreviated form in which each is represented by one hex- decimal number. Most of the other alphanumeric characters signifying operators that BASIC recognizes are also stored in a coded form—not their ASCII values but values greater than 127 (See Table 1).

This saves space required to change the program. CHANGE searches for the desired first character in the variable name using its ASCII code. On finding the first character it continues to look for the rest of the name and makes the change when it finds it. If the variable in the original line is longer than the one specified, no change is made. On encountering a quotation mark or REM, CHANGE attempts no changes until after the next quotation or the end of the REM.

In the blank and LET detection routine, when a character is detected in the search, it is deleted, all “characters” are moved along one space, and the character count is reduced by one. The magnitude of line numbers per se does not influence execution time because two bytes represent the line number for all lines.

Save, Too

I bought a $29 (U.S.) software product called DOC, a valuable utility package. It is marketed by

10 FOR J=1 TO 10000
20 GOTO 30
30 NEXT J
40 STOP "END"
50 REM
60 REM
70 REM
80 REM
90 REM
100 REM
110 REM
120 REM
130 REM
140 REM
150 REM
160 REM
170 REM
180 REM
190 REM
200 REM
210 REM
220 REM
230 REM
240 REM
250 REM
260 REM
270 REM
280 REM
290 REM
300 REM
310 REM
320 REM
330 REM
340 REM
350 REM
360 REM
370 REM
380 REM
390 REM
400 REM
410 REM
420 REM
430 REM
440 REM
450 REM
460 REM
470 REM
480 REM
490 REM
500 GOTO 30

Listing 7. Programming showing processing of GOTOs.
Mini Business Systems (PO Box 15587, Salt Lake City, UT 84115) in BASIC. DOC allows you to list a BASIC program; list all variables in a BASIC program and the number of each line in which each appears; list GOTOs and GOSUBs on a "from-to" basis; and optimize programs.

Listing is done on a page basis. Page length, spacing and output device are selectable, and a title, date and page number are placed at the top of each page. The listings of the variables and GOTO/GOSUBs are useful, particularly in debugging large programs, but really are by-products of the preparation for optimization.

The optimization is a gem. In executing GOTO/GOSUBs, the North Star interpreter "starts at the top" and looks at successive line numbers until it finds the right one. The time required to execute a GOTO depends on how many lines down the program the specified line lies. If you run the program in Listing 7 and measure execution time, then repeat the process with line 20 changed to GOTO 500, you will see the significance of the search technique employed.

I ran Listing 6 in 13.9 seconds... 48 seconds when I altered line 20 to GOTO 500. The difference between the two runs was only the number of statement numbers scanned. Successively removing REMs from this program shows that the interpreter takes approximately 66 microseconds to scan a statement number. This mounts up with GOTOs and GOSUBs within loops. Anything that places the subroutines and line numbers most frequently "gone to" near the top of the program speeds up the program.

A reduction in the number of lines in a program also reduces the amount of searching required. Concatenating statements reduces the number of lines, and DOC uses this technique effectively.

In concatenating, you can remove REMs to optimize the program even further. Surprisingly, LET is not removed. DOC programs actually print the optimized program if required. Optimized programs are often barely readable and, if longer than the line-length maximum (132 characters) allowed by North Star, may not be edited or listed. Optimized programs are often much faster than their non-optimized starting point. The original copy is preserved if required.

I used DOC to optimize CHANGE. Listing 8 and 9 show portions of the output produced by DOC, and Listing 10 is what the optimized program would look like if it could be listed by the interpreter. The original program was 3274 bytes, the optimized version is 2010 bytes, a 39 percent reduction in memory requirement. When run again, the optimized CHANGE performed the same function referred to in Listings 3 and 4. Total run time was 11 minutes, 22 seconds, compared with the original run time of 13 minutes, 45 seconds, a saving of 17 percent in time.

I have three criticisms of the

<table>
<thead>
<tr>
<th>'CHANGE' - VARIABLE CHANGE</th>
<th>VARIABLE MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td>A5</td>
<td>250</td>
</tr>
<tr>
<td>A1</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>610</td>
</tr>
<tr>
<td>A2</td>
<td>1010</td>
</tr>
<tr>
<td>A9</td>
<td>90</td>
</tr>
<tr>
<td>C</td>
<td>360</td>
</tr>
<tr>
<td>P</td>
<td>60</td>
</tr>
<tr>
<td>I</td>
<td>360</td>
</tr>
<tr>
<td>A3</td>
<td>430</td>
</tr>
<tr>
<td>A7</td>
<td>530</td>
</tr>
<tr>
<td>6</td>
<td>770</td>
</tr>
<tr>
<td>J</td>
<td>880</td>
</tr>
<tr>
<td>N</td>
<td>1160</td>
</tr>
<tr>
<td>K</td>
<td>140</td>
</tr>
<tr>
<td>N2</td>
<td>150</td>
</tr>
<tr>
<td>N3</td>
<td>20</td>
</tr>
<tr>
<td>N4</td>
<td>220</td>
</tr>
<tr>
<td>Q</td>
<td>930</td>
</tr>
<tr>
<td>R</td>
<td>160</td>
</tr>
<tr>
<td>S</td>
<td>370</td>
</tr>
<tr>
<td>T</td>
<td>180</td>
</tr>
<tr>
<td>U</td>
<td>210</td>
</tr>
<tr>
<td>V</td>
<td>380</td>
</tr>
<tr>
<td>W</td>
<td>1240</td>
</tr>
<tr>
<td>WS</td>
<td>190</td>
</tr>
<tr>
<td>Z</td>
<td>1290</td>
</tr>
</tbody>
</table>

Listing 8. The variable map produced by DOC in processing CHANGE.
An Extraordinary Offer to introduce you to the benefits of Membership in

ELECTRONICS BOOK CLUB

take 4 of these 20 unique electronics books (values to $69.90)

for only $1.49

with a Trial Membership in the Book Club that guarantees to save you 25% to 75% on a wide selection of electronics books.

Facts About Club Membership

- The introductory books of your choice earn you the Club News, describing the current Selections, Alternates, and other books, every 4 weeks (at a 1% return). Any promotional or instructional information in the reply form (and in the envelope) provided, and return it to us by the due date specified. This date allows you at least 10 days in which to return the form. If, because of late mail delivery, you do not have 10 days to make a decision and receive an unwanted Selection, you may return it at Club expense.

- To complete your Trial Membership, you need buy only four additional monthly Selections or Alternates during the next 12 months. You may cancel your Membership any time after you purchase these four books.

- All books, including the introductory offer, are fully returnable after 10 days if you are not completely satisfied.

- All books are offered at low Member prices, plus a small postage and handling charge.

- Continuing Bonus: You may continue this Membership plan for another year, and can purchase any book you choose. Three Certificates plus payment of the nominal sum of $1.99 will entitle you to a valuable Book Dividend of your choice, which you may choose from a list provided Members.

May we send you your choice of 4 of these practical time-and-money-saving books as part of an unusual offer of a Trial Membership in Electronics Book Club?

Here are quality hardcover volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics. Whatever your interest in electronics, you'll find Electronics Book Club offers practical, quality books that you can put to immediate use and benefit.

This extraordinary offer is intended to prove to you your own experience, that these very real advantages can be yours...that it is possible to keep up with the literature published in your areas of interest, and so save substantially while doing so. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway, without the substantial savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the 4 books of your choice for 10-day inspection. YOU NEED SEND NO MONEY. If you're not delighted, return the books within 10 days and your Trial Membership will be cancelled without cost or obligation.

ELECTRONICS BOOK CLUB, Blue Ridge Summit, Pa. 17214

Blue Ridge Summit, Pa. 17214

Please open your Trial Membership in ELECTRONICS BOOK CLUB and send me the 4 books circled below. I understand the cost of the books I have selected is only $1.49 for all 4, plus a small shipping charge. If not delighted, I may return the books within 10 days and owe nothing, and have my Trial Membership cancelled. I agree to purchase at least four additional books during the next 12 months after which I may cancel my membership at any time.

Name Phone
Address
City
State Zip

(Valid for new Members only, foreign and Canada add 15%, MC-880)
Listing 10. CHANGE after processing by DOC.

copy of DOC I received. The reserved word ERRSET was not included in its "repertoire"—not really a problem since Mini Business Systems has devised a clever way of updating DOC to cater to all new reserved words in future releases of North Star BASIC. Second, BASIC programs have to be converted to data files before being processed by DOC. This is annoying, particularly because the Release 4 of North Star BASIC used allows any file type to be accessed as a data file. The most glaring problem with the system is that it doesn't handle multiline functions properly. A program containing functions will not run if it has been optimized, but you can use a feature of DOC to prevent optimization of segments within a program. This overcomes the problem.

Overall, the DOC package is excellent. A nice bonus is a small program called GOTO-SUB, a clever routine that is an implementation of the "GOTO N" statement. It is used in part of the DOC package and could significantly improve the runtime of many BASIC programs.

OSI SOFTWARE FOR OSI
We Have Over 100 High Quality Programs For Ohio Scientific Systems

ADVENTURES AND GAMES
Adventures - These interactive fantasies will fit in BK! You give your computer plain english commands as you try to survive.

ESCAPE FROM MARS
You awaken in a spaceship on Mars. You're in trouble but exploring the nearby Martian city may save you.

DEATHSHIP
This is a cruise you won't forget - if you survive it!

Adventures $14.95 Tape or 5¼" Disk $15.95 8" Disk

STARGIGHTTER $5.95
Realtime space war with realistic weapons and a working instrument panel.

ALIEN INVADER 6.95 (7.95 for color and sound)
Rows of marching munching monsters march on earth.

TIME TREK $9.95
A real time Starrek with good graphics.

BATTLEPAC $17.95
For the battlebuff. Contains Seawolf, Starfighter, Bomber and Battlefleet.

And lots, lots more!

Our $1.00 catalog contains a free program listing, programming hints, lists of PEEK and POKE locations and other stuff that OSI forgot to mention and lots more programs like Modern Drivers, Terminal Programs, and Business Stuff.

Aardvark Technical Services 1690 Bolton, Walled Lake, MI 48088 (313) 624-6316

82 Microcomputing, August 1980
Data Terminals From MICROMAIL? YES,

Because We Offer....

...A 'Personal Approach'
Towards the Quick and Efficient Handling of Your Individual Order.

...Inventory.
The Equipment You Select is Readily Available from Our Stock.

...Terminals Only.
We Specialize in Data Terminal Equipment.

DIABLO 1650
• Prints at 40 cps., using 88, 92, or 96 char. metalized printwheels.
• Vertical resolution 1/48; Horizontal 1/120". Capable of proportional spacing, bidirectional printing, and graphics under software control.
• Bidirectional normal and direct tabs. Left, right, top and bottom margins.
R.O. $2890.00
KSR $3285.00

DIABLO 1640
• Uses plastic printwheel and prints at 45 cps. Otherwise, shares identical features with 1650 including:
 - Friction or tractor feed, up to 15" wide.
 - Cartridge ribbon, fabric or carbon.
R.O. $2745.00
KSR $3140.00

DEC LA 34
(Shown with optional forms tractor and numeric keypad)
• Prints 10, 12, 13.2, or 16.5 characters per inch, upper/lower case.
• 2, 3, 4, 6, 8, or 12 lines per inch.
• Friction feed, paper width to 15 inches.
Options:
- Numeric keypad — $80.00
- Adjustable forms tractor — $130.00
$999.00

SOROC IQ 120
• Displays 80 x 24 upper/lower case.
• Separate numeric keypad and cursor keys.
• Protected fields displayed at reduced intensity.
$740.00

TEC 510
• Reverse video, blinking, underline, 1/2 intensity, protected fields, blank security field.
• Transmit character, line, partial page, page, or unprotected data.
• Cursor up, down, left, right, return, home. plus load and read.
$750.00
(in quantities)

SOROC IQ 140
• 117-key detachable keyboard with numeric cluster and cursor control.
• Insert/delete line, insert/delete character.
• Underline, blink, reverse, 1/2 intensity, protected and blank fields.
• Printer port with independent baud rate — prints line, partial or full screen.
$1130.00

TELETYPETE 43
• Prints 132 columns, upper/lower case with true descenders.
• 30 character/second print speed.
• 110-300 baud.
• Uses 12" wide by 8.5" pinfed paper.
• Print position scale, paper guide and supply rack.
$999.00

To Order:
Send check or money order to:
MICROMAIL, P.O. Box 3297,
Santa Ana, CA 92703. Personal
or company checks require two
weeks to clear.
Terminals in stock are shipped
the business day after receipt of
certified funds.
All equipment includes factory
warranty.

MICROMAIL • BOX 3297 • SANTA ANA, CA 92703
(714) 731-4338

Shipping:
We ship freight collect by UPS when possible. Larger terminals are shipped by motor freight. Air and
express delivery is available on all products.
Why Do You Need Two Disks?

A good question. Here are some answers.

In the early days of computers (before Intel discovered silicon), there were no disk operating systems, or disks, for that matter. Computers of the day were monstrous and used large amounts of power and took up massive amounts of space. Some of the larger ones had nearly the power of an 8008.

The programmers of this time had to do everything on tape or punched cards. Any required operating system functions were included with their programs. The high cost of computing made this scheme impractical, although these computers were a type of personal computer.

In an attempt to recover some of the time lost when the computer changed from one user to another, the batch processing operating system was born. Users submitted their programs and data on punched cards, which were read onto a tape. When the tape became full, it was processed and the output was distributed to the users.

Improvements in hardware architecture, including the introduction of random access disk drives, allowed operating systems to become more versatile. This, in turn, allowed more effective use of the available computer power. These operating systems relied upon the disk as their primary storage device and thus became generally known as disk operating systems (DOS). Even now, most of the operating systems used on the larger computers are disk-based. However, all of this convenience and power consumes as much as 40 percent of the computer's resources.

One Small Step

With the introduction of personal computers in 1975, the industry changed irrevocably. Now the power of the computer could be allocated in a one-on-one basis economically. Evolution of the operating systems for personal computers followed that of their larger brethren. These first computers had no operating system, and the programmer had to do everything (in between RAM failures). Mercifully, the batch processing stage was bypassed, probably because keypunch machines were beyond hobbyist budgets.

When floppy disks for microcomputers were introduced, the first DOS programs began to appear. These have been written mainly by big-computer programmers determined to bring the world a better DOS. Some of these efforts have been quite remarkable, producing big-computer operating systems in miniature. This has led people to rally behind their favorite DOS, forsaking all others, and attempting to convert nonbelievers.

Shortcomings

Unfortunately, it has become the norm to evaluate new computers and disk systems by the power of their DOS. Too much emphasis has been placed on the importance of DOS. Sophisticated disk operating systems are not necessary on personal computers and are actually detrimental to them. The current crop of disk operating systems has been written by programmers for programmers to use. Users of such systems may have to read a 60-page manual (or worse, have no manual) just to use them. This may, in part, explain why the so-called "home" computer has appeared only in the homes of computer professionals.

Secondly, these systems solve problems that don't exist. One example is the area of file allocation. Most of the disk operating systems now offered have complex logic in them to allocate disk space to a program dynamically as it runs. This means that every sector of every disk will be used. The cost for this service, however, is a general slowing of disk read/write operations and making random access of disk files difficult to impossible. All of this to conserve real estate on a diskette that costs $4.50?

Disk operating systems are programs that make demands on the resources of a computer. Typical DOS memory requirements range from 8K to as much as 20K bytes of memory. This means that the user either has to restrict his memory usage or buy more memory to use a disk. Once he has his disk, he will find that the DOS wants a piece of it, too. Thirty percent or more of the system disk is used for DOS-related data, making it unavailable to the user. Thus, two drives may have to be used even though all of the data would fit on one.

A typical DOS may consist of several thousand lines of source code. In a program of this size even the best, most experienced, programmer may make a mistake. Large-computer manufacturers expect and plan for software crashes. They have support personnel available to assist the user in the recovery of his data files. A
personal computer buyer has no way of knowing about this possibility and nowhere to turn when it occurs.

DOS Requirements

What constitutes a good DOS for a personal computer? Several key items need to be provided:

1. It must provide for a simple means of saving and loading programs.
2. It must provide the necessary basics to access the disk in a direct (i.e., random) manner from a program written in a high-level language such as BASIC. All input and output functions should be handled by the DOS, as well as head positioning, error recovery, and error recovery.
3. It must make minimal demands on RAM memory, preferably using less than 8K. No part of the disk should be used except for the minimal amount needed to store the DOS itself.

DOS owners may wonder, "How can you do anything with such a simple DOS? You haven't even provided for a directory!" The whole point is that the application program will provide whatever DOS features it needs without bearing the overhead of a lot of features that it does not need.

For example, if a program uses all of a disk for a single inventory file, does it really need a directory of that disk? If a directory is needed, why not build it in the form most useful to the application? In this way, the least demands are made on the resources of the computer while providing the programmer with the capability to mold the operating system to best suit his application.

If the programmer can access the entire disk, then he has to do his own file allocation. He may even overwrite a file destroying the one following it! To remedy this the programmer has to plan how his files will grow and build that knowledge into the application. Isn't it better to take care of that at the time the program is written than to build a timebomb that expires with "DISK FULL IN 600"?

At first glance, it may appear that all you really have with your simple DOS is a fast cassette. Any feature of a big DOS that a user needs can be implemented in high-level language by the user. He also has full random access capability of the entire diskette. Look at a complex DOS whose threaded files prevent random access and tell me again who has the "fast cassette."

It is not my intention to downgrade any of the disk operating systems being marketed today for the personal computer hobbyist. If a big DOS is your main interest, then by all means use it. But don't make the assumption that such a DOS is essential for successfully installing an application on a personal computer.
Problem Solver: Makes complex decisions based on your criteria. You can't be without it.
Cash Flo: Every item can have a six-point growth curve—All other cash flow packages are now obsolete.
Numerology: As last, SPD makes this accurate tool of the occult available to you. (Source book $10)
The Tool Box: Modules in a series of tools for specific business problems...
Real Pak 1: Real estate investment property analysis. Built for pros. Gives you the "hammer" in any deal.
Baccus 1: MDMS compatible or stand alone invoicing and order entry module. We can't be without it.

$30 Disk $15 Tape (limited versions)
Specify 8" or 5", C1 or C2. Or, Send $2 for full-line documentation package

STRUCTURED PROGRAM DESIGNERS
371 Broome St., NY, NY 10013

THE BEST IN SOFTWARE FROM COMPLEAT SYSTEMS
NON-PROFIT/SERVICE INDUSTRY ACCOUNTING
For TRS-80 and CPM. In use over 2 yrs. A partner of a big 8 acct firm said: "... the best accounting program I have seen... does in a few pages what is frequently not done in 50..." Unique features include:
- Twice as fast as other systems
- Common sense accounting—no debits or credits
- Budgets, prior year, and year-to-date
- Current status available at all times
- 8 separate Funds or Co's allowed
- over 2000 accounts allowed
- standard 8\x10 output
- one year free update service
Min. system 2 disk, 32K TRS-80 or 1 disk, 48K Z-80 CPM $695/$35 manual. Complete systems also available.

SECURITY FOR TRS-80 AND CPM
The best security system available. Automatically encodes/decodes all data to/from disk. A billion billion (10^60) combinations. Typical uses include: proprietary, sales, financial, tax, or confidential client information; and time sharing/multi user systems such as Source, Micront, etc.
$49.95 Min. systems 1 disk, 16K, TRS-80 or 24K CPM.

$500 FREE to first to decode our sample message.

COMPLEAT SYSTEMS
9551 Casaba Ave. Chatsworth, CA 91311
1-800-999-4555
TRS-80 and CPM are registered trademarks of Tandy Corp and Digital Research.

THE ZULU IS BACK!
NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE

MA1001C BRAND NEW!

ALARM CLOCK KITS:
4 Digit .5"

Here it is! The first of several quality kits we have been asked for: Here is what you get...
支出 unbelievable as it may sound...
1 National - 5375AA Clock Chip
2 Bowman Clock Stick Readout (L.E.D.) 4 digit - 1/2"
3 Transistors
4 Push Buttons for time set
5 Toggle Switches for alarm
6 Filter cap
7 1N4000 series diodes
8 1N4148
9 Disc caps
10 Resistors
11 Transducer (Speaker) for Alarm
12 LED Lamp for alarm indicator

D. C. MODEL
Includes 60 Hz timebase

NEW!

ORDER KIT CK-100AC
P.C. Board $2.25
Plug In Transformer $1.50
Case $3.50

$9.99

NEW!

ORDER KIT CK-100DC
P.C. Board $2.25

$12.75

LAB-BENCH VARIABLE POWER SUPPLY KIT
5 to 20 VDC at 1 AMP. Short circuit protected by current limit. Uses IC regulator and 10 AMP Power Darlington. Very good regulation and low ripple. Kit included: PC Board, all parts, large heatsink and shielded transformer. 50 MV, TYP. Regulation.

$12.00 kit SUPER SALE

60 Hz CRYSTAL TIME BASE
$4.95 (Complete Kit)
Uses MM5369 CMOS divider IC with high accuracy 3.579545 kHz Crystal. Use with all MOS Clock Chips or Modules. Draws only 1.5 MA. All parts, data and PC Board included. 100 Hz same as above except $5.95

16K DYNAMIC RAM CHIP - WORKS IN TRS-80 OR APPLE II
16K X 1 Bits. 16 Pin Package. Same as Mostek 4116-4250 NS access 410 NS cycle time. Our best price yet for this state of the art RAM 32K and 64K RAM boards using this chip are readily available. These are new, fully guaranteed and backed by a major mfgr.

REPEAT OF A SELL-OUT!
VECO precision thermistor glass type VECO #41A727.2K ohms at room temp VERY sensitive. Individually packaged in plastic vials. $3.00 value.
$1.00 each or 3 for $2.50

5-14 V.D.C. BETTER BEEPER
Two audio oscillator — a low frequency pulse oscillator — either or both audio frequencies can be shifted (warbled) or pulsed on and off. Constant tone capability. any combination of pulses and warbles or tones. 1/2 x 1/2

$3.55 or 3 for $9

Digital Research: Parts
OF TEXAS
P.O. BOX 401247C GARLAND, TEXAS 75040 • (214) 271-2601

TERMS: Add 50¢ postage, we pay balance. Orders under $15 add 75¢ handling. No C.O.D. We accept Visa, MasterCharge and American Express cards. Tex. Res. add 5% Tax. Foreign orders (except Canada) add 20% P&H. 90 Day Money Back Guarantee on all items. Write for our free catalog full of many useful bargains.

Microcomputing, August 1980 86
NOW PRINT APPLE®
HIRES-GRAPHICS NORMAL, INVERSE, IN 2 SIZES.
TX-80 PRINTER
by EPSON

$795.
with GRAFTRAX

PACKAGE: Parallel standard IEEE 488 and serial RS-232
optional, (Apple type parallel card and cable 99.)

CHARACTER SET: Full 96 Character ASCII Set (upper and
lower case with expanded print).

PRINT HEAD: 100 x 10 character life expectancy.

GRAFTRAX OPTION* full dot addressable graphics (480 dots/line)
with Automatic print head protection on dense pictures plus form feed
and skip over perforation.

FREE! APPLSOFT-WARE for graphics dump included

UPDATE EARLIER TX-80'S TO GRAPHICS for $99.

MASTERCHARGE & VISA O.K.
DEALER INQUIRIES INVITED

Computer Corner of New Jersey
439 Rt. 23, Pompton Plains, N.J. 07444
(201) 835-7080

PRISES SUBJECT TO CHANGE

NOW
Fastest
Data Manager
PET™

JINSAM™

CUSTOM DATA FILES
CUSTOM REPORTS/LABELS
KEYED RANDOM ACCESS
FAST/EASY/MENU DRIVEN
MULTIPLE SEARCH KEYS
PRIVACY ACCESS CODES
WILD CARD SEARCH

INTRODUCTORY OFFER
PACKAGE $150

USERS GUIDE ONLY $25
DEMO TAPE $5 DISK $8
(REFUNDABLE WITH PURCHASE)

Powerful user commands. Self explanatory, easy to use. Straight forward
input and editing routines — "idiot proof". Create any desired relationship.

Optional STATISTICS, MATH, PTE WORD PROCESSOR packages

TYPICAL APPLICATIONS: Personnel files, Customer files, Inventory,
Sales records, School records, Appointment schedules, Real estate
/Apartment listings, Subscription lists, Research surveys, Mailings.

Send Check or Money Order plus $2 Shipping
(NY residents add 8% Sales Tax)
- DEALER INQUIRIES WELCOMED -

JINI MICRO-SYSTEMS, Inc. P.O. Box 274-K • Bronx, NY 10463

RONDURE COMPANY

SPECIAL
Printer for your
Microcomputer

GE TERMINET
300 PRINTER

Pin feed—9” paper

- 80 Print positions
- Receive only
- ASCII code
- RS-232 Interface
- 30 CPS
- Upper & lowercase
- Shipping w/ 75#
- Shipping containers $15.00

(new)

(good working condition)

Will run on serial RS232 port of
most micros including TRS-80.

$450.00

WE HAVE FLAT-PACK
ACOUSTIC

Modem pickup

$19.50

NEW
POWER SUPPLY

$25.00

5V at 3 Amp
12V at 6 Amp
-12V at 3 Amp

USED POWER SUPPLY

$15.00

6V at 12 Amp
16V at 6 Amp
6V at 2 Amp

MICRO SWITCH KEYBOARD

USED BUT LOOKS VERY NICE

ASC II

$40.00

(With Print)

USED OMNITEK

MODEM ORIGINATE
ONLY TESTED

$90.00 Sale

ORDERING INFORMATION:
We ship the same day we receive a certified check or money order.
Texas residents add 5% sales tax. Please call if you have a question.
Write for our CATALOG of many parts, terminals, printers, etc.
All items subject to availability, Your money returned if we are
out of stock.

SHIPPING INFORMATION:
Modems: $3.00 each; Key Boards $4.00, Power Supply $7.00.
Large Items & Parts: Specify Freight or Air Freight Collect.
Foreign Orders: Add appropriate freight or postage.
We now take Master Charge and Visa orders. Specify full number,
bank number and expiration date.

Reader Service index—page 241

Microcomputing, August 1980 87
Disassembler
For the Heath H8

The DIS-8 program is self contained and should be adaptable to other 8080 and 8085 systems.

Patrick Swayne
290 Springdale
Sebastopol, CA 95472

Adapting software from one computer to another can be a challenge, especially if the software needs RAM where there isn’t any and no source listing is available. This is the problem I encountered when I decided to adapt Cromemco’s Control BASIC to my Heath H8.

Control BASIC is designed to reside in ROM starting at 344000A (A is Heath’s designation for split octal notation) and use RAM starting at 2000A. There is no problem with the high address, but Heath requires the first 8K+ of RAM in their machine, and user RAM starts at 040100A.

The obvious need to make some changes to Control BASIC prompted me to write the disassembler (see Listing 1). This program (DIS-8) occupies about 2.5K of memory space at the bottom of the H8’s user RAM area. It is self sufficient, including I/O routines, and could easily be adapted to other 8080- or 8085-based computers. (Note: The console driver was written for the H8-4 interface card. The newer H8-4 card requires different software.)

Program Operation

The output of DIS-8 resembles that of Heath’s assembler, HASL-8. Each line contains the current address in split octal, the op code that is there, the

<table>
<thead>
<tr>
<th>ENTER STARTING ADDRESS: 040 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>040.100 006 172 MVU B172G # Z</td>
</tr>
<tr>
<td>040.102 303 107 040 JMF 040107A</td>
</tr>
<tr>
<td>040.105 006 316 MVU B316G # N</td>
</tr>
<tr>
<td>040.107 076 201 MVU A201G #</td>
</tr>
<tr>
<td>040.111 323 373 OUT 373G</td>
</tr>
<tr>
<td>040.113 076 100 MVU A100G # B</td>
</tr>
<tr>
<td>040.115 323 373 OUT 373G</td>
</tr>
<tr>
<td>040.117 177 MOV A+R</td>
</tr>
<tr>
<td>040.120 170 MOV A+B</td>
</tr>
<tr>
<td>040.121 323 373 OUT 373G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTER STARTING ADDRESS: 042 374</th>
</tr>
</thead>
<tbody>
<tr>
<td>042.074 104 MOV B+H</td>
</tr>
<tr>
<td>042.075 111 MOV C+R</td>
</tr>
<tr>
<td>042.076 123 MOV D+E</td>
</tr>
<tr>
<td>042.077 055 ECR L</td>
</tr>
<tr>
<td>042.100 070 DB 070G</td>
</tr>
<tr>
<td>042.101 054 INR L</td>
</tr>
<tr>
<td>042.102 040 DB 040G</td>
</tr>
<tr>
<td>042.103 126 MOV D+P</td>
</tr>
<tr>
<td>042.104 105 MOV B+L</td>
</tr>
<tr>
<td>042.105 122 MOV D+B</td>
</tr>
</tbody>
</table>

Listing 2. Sample run of DIS-8 disassembling parts of itself. Note program’s handling of string data. (The byte loaded into the B register in the first line had to be changed to meet the requirements of the terminal.)

<table>
<thead>
<tr>
<th>ENTER STARTING ADDRESS: 2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040 06 7A MVU B7AH</td>
</tr>
<tr>
<td>2042 C3 27 20 JMF 2047H</td>
</tr>
<tr>
<td>2045 06 CE MVU B+CEH</td>
</tr>
<tr>
<td>2047 3E 01 MVU A+01H</td>
</tr>
<tr>
<td>2049 D3 FB OUT FBH</td>
</tr>
<tr>
<td>204B 3E 40 MVU A+40H</td>
</tr>
<tr>
<td>204D D3 FB OUT FBH</td>
</tr>
<tr>
<td>204F 7F MOV A+R</td>
</tr>
<tr>
<td>2050 7B MOV A+B</td>
</tr>
<tr>
<td>2051 D3 FB OUT FBH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTER STARTING ADDRESS: 2229</th>
</tr>
</thead>
<tbody>
<tr>
<td>2229 44 MOV B+H</td>
</tr>
<tr>
<td>222A 49 MOV C+R</td>
</tr>
<tr>
<td>222B 53 MOV D+E</td>
</tr>
<tr>
<td>222C 2D ECR L</td>
</tr>
<tr>
<td>222D 3B DB 3BH</td>
</tr>
<tr>
<td>222E 2C INR L</td>
</tr>
<tr>
<td>222F 50 DB 20H</td>
</tr>
<tr>
<td>2230 56 MOV D+P</td>
</tr>
<tr>
<td>2231 45 MOV B+L</td>
</tr>
<tr>
<td>2232 52 MOV D+B</td>
</tr>
</tbody>
</table>

Listing 3. DIS-8 sample run (hex version).
ASCII to Binary Conversion Routine

<table>
<thead>
<tr>
<th>BIN</th>
<th>SU1</th>
<th>30H</th>
<th>NO CHAR < '0'</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>30H-47H</td>
<td>NO CHAR > 'F'</td>
<td></td>
</tr>
<tr>
<td>ADI</td>
<td>6</td>
<td>A TRU FF</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>BINO</td>
<td>YES, BRANCH</td>
<td></td>
</tr>
<tr>
<td>ADI</td>
<td>7</td>
<td>'I' TO '0' ILLEGAL</td>
<td></td>
</tr>
</tbody>
</table>

Get Starting Address

<table>
<thead>
<tr>
<th>ADDR</th>
<th>LXI</th>
<th>H+O</th>
<th>CLEAR H+L</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDR</td>
<td>CALL</td>
<td>IN</td>
<td>GET ENTRY</td>
</tr>
<tr>
<td>CPI</td>
<td>CALL</td>
<td>OUT</td>
<td>ECHO</td>
</tr>
<tr>
<td>RZ</td>
<td>CALL</td>
<td>BIN</td>
<td>CONVERT TO BINARY</td>
</tr>
<tr>
<td>JC</td>
<td>ERR</td>
<td>BAD ENTRY</td>
<td></td>
</tr>
<tr>
<td>DAD</td>
<td>H</td>
<td>OVER 4 PLACES</td>
<td></td>
</tr>
<tr>
<td>DAD</td>
<td>H</td>
<td>MOVE LAST ENTRY</td>
<td></td>
</tr>
<tr>
<td>DAD</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAD</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORA</td>
<td>L</td>
<td>ADD LATEST ENTRY TO L REG</td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>L+1</td>
<td>ADDRO</td>
<td>GET ANOTHER ENTRY</td>
</tr>
</tbody>
</table>

Print Address

<table>
<thead>
<tr>
<th>PADDR</th>
<th>MOV</th>
<th>A+H</th>
<th>GET ADDR HI BYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LXI</td>
<td>DBUFF</td>
<td>CALL</td>
<td>ASC</td>
</tr>
<tr>
<td>MOV</td>
<td>A+L</td>
<td>GET LOW BYTE</td>
<td></td>
</tr>
<tr>
<td>JMP</td>
<td>ASC</td>
<td>PRINT IT</td>
<td></td>
</tr>
</tbody>
</table>

Binary to ASCII Conversion Routine

<table>
<thead>
<tr>
<th>ASC</th>
<th>PUSH</th>
<th>PSW</th>
<th>SAVE BYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRC</td>
<td>RRC</td>
<td>RRC</td>
<td>MOVE HIGH NIBBLE</td>
</tr>
<tr>
<td>RRC</td>
<td>RRC</td>
<td>RRC</td>
<td>DOWN</td>
</tr>
<tr>
<td>ANI</td>
<td>OFH</td>
<td>CALL</td>
<td>ASC</td>
</tr>
<tr>
<td>CALL</td>
<td>ASC</td>
<td>POP</td>
<td>PSW</td>
</tr>
<tr>
<td>ANI</td>
<td>OFH</td>
<td>CALL</td>
<td>ASCI</td>
</tr>
<tr>
<td>ASCI</td>
<td>CALL</td>
<td>ASCI</td>
<td>CONVERSION ROUTINE</td>
</tr>
<tr>
<td>STAX</td>
<td>D</td>
<td>INX</td>
<td>D</td>
</tr>
</tbody>
</table>

The Following Routine Converts A 4 Bit Value to An ASCII Character

<table>
<thead>
<tr>
<th>ASCI</th>
<th>ADI</th>
<th>90H</th>
<th>A TO F WILL CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAA</td>
<td>DAA</td>
<td>40H</td>
<td>CARRY TO BE SET</td>
</tr>
<tr>
<td>DAA</td>
<td>DAA</td>
<td></td>
<td>ADD CARRY AND</td>
</tr>
<tr>
<td>JMP</td>
<td>ADDR</td>
<td>RET</td>
<td>ADJUST</td>
</tr>
</tbody>
</table>

Modifications

- **Software**
 - The H8 and its software use an octal number system, I originally wrote DIS-8 with hexadecimal input and output, as shown in the sample run in Listing 3. If you prefer the hex version, the routines labeled BIN, ADDR, PADDR and ASC must be replaced with those shown in Listing 4.

DIS-8 Disassembler for Heath H8

- **DIS-8 (Octal Version)**
- **Add 8080 Disassembler for Heath H8 Computers**
- **Written by Patrick Swayne**
- **Revised 3-27-79**

<table>
<thead>
<tr>
<th>040.100</th>
<th>ORG</th>
<th>040100A</th>
</tr>
</thead>
<tbody>
<tr>
<td>040.100</td>
<td>006 116</td>
<td>Mini Console Driver</td>
</tr>
<tr>
<td>040.102</td>
<td>303 107 040</td>
<td>MPU B1160 for 1 Stop Bit</td>
</tr>
<tr>
<td>040.102</td>
<td>UART</td>
<td></td>
</tr>
</tbody>
</table>

- **DS 55 to DS 45**: The hex version's input routine will only accept valid hex numbers, and no leading zeros are required for addresses less than 1000H.

- **With patience and a little luck**, you can decipher a machine-code program using DIS-8. I now have Control BASIC operating on a homemade ROM board in my H8.

The complete assembly source for DIS-8 (both versions) is available on cassette from the author for $5, in Heath's TED-8 format.
The Personal CHORGANIZER
Are you thinking about owning a personal computer but the thought of having to learn a lot of "geek" sounding words turns you off? Wish people could talk and write in plain English? Well, behold the CHORGANIZER. This book discusses just what most people expect a computer to do for them. It shows what to do to remove the drudgery from common chores. How? Through high-speed organization techniques that the very thing a computer is well suited to do. The CHORGANIZER will help you to learn how to save money, plan better, locate important facts quickly. This can lead to a better life-style for you. It will free you from laborious chores. What kind of chores, you wonder? Just to name a few, a computer can help you balance your checkbook, maintain a list of household valuables for inventory and insurance claim purposes, keep a list of monthly department store charges, record tax deductible expenses by category for income tax purposes, and mail cards, invitations or notices to friends, members of a club, business associates, etc. Using a few easy keystrokes, and a data base management program on your personal computer and your time can be spent on life's pleasures instead of day-to-day chores.

SCELBI's Secret Guide to Computers
This book will turn you into a computer expert, quickly and easily. It explains the kind of computer found in most schools, small businesses and homes - the kind that has interactive BASIC. You'll learn BASIC, having fun every step of the way. The book explains how to deal with the computer machinery, which buttons to press and trains you to write many kinds of programs. The author's "machine style" of writing is designed to hold your interest. The only way to learn BASIC programming is to look at sample programs, analyze them, and then invent your own. This book contains 150 sample programs that do just that. Charts are given comparing the difficulties, and some of the "secrets" of this book and you'll be programming a computer with confidence!

Z80 Instruction Handbook
Your complete guide to the powerful Z80 instruction set. Machine codes are presented in both octal and hexadecimal format. A convenient index lists all instructions alphabetically along with machine codes and timing information. Industry standard mnemonics used throughout. Convenient pocket-sized edition.

Software Cookbooks — 6502, 6800, 8080, Z80
With the right SCELBI Gourmet Guide & Cookbook, you'll be able to put together programs without having to start from scratch. You'll have the most useful routines at your command - already programmed and ready-to-use. Features are search and sort routines, numerous examples of general purpose utility routines, I/O and interrupt programming, control and manipulation of stacks, code and numeric conversion routines, flowcharts and source listings. Special listings include a presentation of machine codes (hexadecimal and octal notation included), and a reference guide to complete instruction set. All recipes are time tested. Tens of thousands of SCELBI's cookbooks have been used throughout the U.S. and in countries around the world.

Learn Micro-Computers
A new multimedia information package for the beginner. Includes text from Understanding Microcomputers plus high-quality cassette. Covers all the basics quickly, easily, and enjoyably. Companion tape includes chapter synopses of the book. A great new idea for self-study!

Take My Computer . . . Please!
An approximately funny full length book about the time-to-life minimum requirements by author Steve Cicirca and his computer's inability to cooperate. Page after page of jokes and illustrations, too! Hardcover edition.

Personal Information Management System
Increase your information management capabilities - use PIMS! In business you've got a personal stake in how information is managed because information is your key to success. PIMS will allow you to unleash the power of a microcomputer, to make it work for you. Use your computer for accounts receivable, . . . accounts payable . . . maintenance of inventory records to keep track of credit charges. Or, apply PIMS to personal finance and let it help you to improve your ability to plan . . . save money . . . locate important facts quickly. Specifications such as management of income tax deductions, department store charges, keeping track of personal disbursements, and more, can be managed through your computer. Let PIMS introduce you to a new way of living . . . enjoy a better life style, more happiness and freedom from drudgery of routine chores through the better command of information that PIMS can bring your way. Designed for computers such as the TRS-80, PET, etc., PIMS will give you the power to succeed in either the professional or personal arena, even without prior knowledge of programming.

Calculating with BASIC
Here's a variety of programs in BASIC language to help the businessman, scientist and engineer. Shows how to apply the language to practical problems and equations. Formulas cover cover calculations of interest, payback periods, mortgage schedules, techniques for extending number of useful digits in monetary calculations using limited BASIC. A variety of electronic, applied formulas are programmed. The mechanics chapter contains resultant-force calculations, attractive forces due to gravity, projectile motion prediction and graphing, moments of inertia for T, section, I, section and channel sections. Mathematics chapter includes programs to solve the quadratic formula, general summation formulas such as sum of geometric progression, number conversion program, algorithms to compute sine, cosine, tangent, log e. For fun, games of Hangman and Space Capture are provided.

Microcomputer Potpourri
A pocket-sized reference for the beginner. Data on all the popular chips. Pin connections, diagrams, distinguishing features. All the pertinent information is presented clearly and concisely. Also included is a glossary covering all the jargon. Full digest on understanding microcomputers.

You'll appreciate a special quality of SCELBI books - A mark of excellence that's hard to find elsewhere. Books written authoritatively, yet in a style that is easy to read and with an appearance that makes reading them a pleasure. See SCELBI books at your favorite electronics or computer store or use this handy coupon and order direct. HP-85 users, ask about our new programs for that machine.

SCELBI Publication
281
20 Hurlbut St., Elwood, CT 06110

<table>
<thead>
<tr>
<th>Amt.</th>
<th>City/State</th>
<th>Zip Code</th>
<th>Card No.</th>
<th>Bank No.</th>
<th>Signature</th>
<th>Name (print)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HOME FINANCE PROGRAM — The most complete & concise home budgeting program for the Apple. Simply laid out & easy to use.
• 175 entries/12 categories per month or year
• Month-to-date, year-to-date summaries
• Classifies tax deductible expenditures
• Balances & reconciles checkbook
Specify if you have Apple II+.
Price: $39.95

OMNIBUS BANKING & FINANCIAL
PAK — A program designed to aid businesses & consumers in long or short range financial planning.
• Examines investments, savings & annuities, mortgages & loans; depreciation & amortization schedules & much more.
Price: $59.95

TEXT PROCESSING SYSTEM — A true text editor & assembler. Create & edit integer, Applesoft* & Assembly language programs
• Cumbersome line numbers are no longer needed
• Basic programs can be converted into text files, edited, then converted back
• Uses all 56 standard 6502 opcode mnemonics, plus 6 additional pseudo opcodes
• Includes 43 page manual
Price: $55.00

GAME DISK
TRY YOUR LUCK! Slots, roulette, craps & blackjack. (All odds listed).
DIET — Individually charts a total weight loss program & schedule
BIOGRAPHY — Separate critical days listing with graph.
LONGEVITY — Based on medical statistics. How long will you live? Requires Applesoft.
Price: $39.95

CHECKBOOK PROGRAM — Fast accurate checking account storage, access, balancing, and trouble shooting. Requires Applesoft.
Price: $29.95

DATA BASE MANAGER
• Selects information with full BOOLEAN logic
• Allows shifting of large data base into smaller working data base
• Designers input format or let you
• Sorts on any or all fields
• Lets file expand to occupy as many disks as you wish
• Allows rapid data entry in blocks for repeated data
• Requires Applesoft. Includes 12 page manual
Price: $50.00

Apple II* Apple II+, *Applesoft are trademarks of Apple Computers, Inc.
WE WILL NOT BE UNDERSOLD

16K MEMORY UPGRADE KITS $54
for TRS-80®, Apple II, Sorcerer (specify)

PRINTERS
NEC Spinwriter
Letter Quality High Speed Printer
Features: TRS-80® interface software, quick change print fonts, 55 cpi, bidirectional, high resolution plotting, graphing, proportional spacing
$289
With Tractor Feed $289
DIABLO 1650
R.O. $2890 KSR $3285
779 CENTRONS TRACER FEED PRINTER $969
Same as Radio Shack line printer
737 CENTRONS FRICTION & PIN FEED PRINTER $389
9 x 7 matrix
730 CENTRONS FRICTION & PIN FEED PRINTER $389
7 x 7 matrix Same as Radio Shack line printer II
P-1 CENTRONS PRINTER $269
Originally Radio Shack quick printer
PAPER TIGER (IP440) $939
Includes 2k buffer and graphics options
TI-810 Faster than Radio Shack line printer III
Parallel and serial w/TRS-80® interface software
$1575
with upper and lower case and paper tray
OKIDATA Microline 80 Friction and pin feed
$559
Tractor Feed, friction, and pin feed
EATON LRC 7000 + 64 columns, plain paper
$679
ANAXED DP-9500 $1389
CAT MODEM Originate and answer same as Radio Shack Telephone Interface II
LEEDEX MONITOR Video 100 $129

SOFTWARE FOR THE TRS-80® Software $49.50 Manual $49.50

CD-INVESTMENT PORTFOLIO MANAGER: This is what investors have been waiting for! This powerful program was developed by serious analysts working with software designers. It comes on one cassette — 16k, LEVEL II on one side, 32K DISK BASIC on the other. Store and report data. Review your portfolio. Produce detailed status, value, gain, and carcinogen analysis. Compare alternatives.

INTEGRITY TERMINAL SYSTEM $49.50
by LANCE MIKUS: Enables a TRS-80® to act as a dial-up terminal on any standard time sharing network. Provides a TRS-80® with control key, ESC key, Repeat Key, Quit Out key, Break key, full upper and lower case support, selectable printer output, and program serial number. $19.50 for each additional cassette.

CQA-DATA MANAGEMENT SYSTEM: Automates your information processing tasks. You can create a file of customer information, quickly and easily add, delete, or update records on a file; keep a file in order by the value in any field; and print records in any desired order or from any field. $29.50.

CSA-MAILIST SYSTEM: Creates, maintains and efficiently utilizes a name, address and telephone number file. 400 individual name-address entries can be managed directly by record number (direct access file). Records can be performed, name + address + telephone number combinations can be coded. Listing-direcories and files can be printed. A conversion facility is provided to convert most sequential name, address file formats into direct. Requires 32K TRS-80® and one disk.

INVENTORY Requires 32K, TRS-80® $125.00
INVENTORY Catefy basic form via LISR. Sorts "Random Order" or "Sequential Order". Includes record for each unit in inventory, record for each unique part, and record for each unit in warehouse. $99.50

ACCESSORIES
HEAD & KEY/DISKETTE: Cleans drive Read/Write head in 30 seconds. Diskette asbestos-lose oxide particles, magnetic oxide carried on other foreign particles that might hinder the performance of the drive head. Lasts at least 3 months with daily use. Specify 5.25" or 3.5" 320 $22.00 ea for $3
FLIPPY SAVER: Protection for center hole of 5/16" floppy disks. Only 1 needed per diskette. Kit contains centering post. press, tool, 20姆m mating rings, installation tools and rings for 25 diskettes. Re-orders of rings only: $7.95

DISK DRIVES $314
More capacity than Radio Shack 35 Track (80 K Bytes) drive. Fully-assembled and tested. Ready to plug-in and run the moment you receive it. Can be intermixed with each other and Radio Shack drive on same cable. TRS80® compatible silver enclosure.

90 DAY WARRANTY. ONE YEAR ON POWER SUPPLY.

FOR TRS-80®

CPI-100 5¼", 40 Track (102K Bytes) for Model I $314
CPI-200 5¼", 77 Track (197K Bytes) for Model I $549
CPI-800 8” Drive for Model II (1/2 Meg Bytes) $795

For Zenith 269

CPI-189 5¼", 40 Track (102K Bytes) add-on drive $394
CPI-77 Dual 5¼" add-on drive system $995

DIESKETTES — Box of 10 (5¼") with plastic library case $24.95 8" double density for Model II (box of 10) $36.49

COMPLETE SYSTEMS

TRS-80® LEVEL II-16K with keyboard $719
with 32K memory $899
with 64K memory $1299
with 128K memory $1799

ZENITH 269, 46K all-in-one computer $2595

ZENITH 219 $740

TELEVIDEO 912B $745
920B $769

ATARI 400 $499
ATARI 800 $799

MATTEL INTELLIVISION $249

NORTH STAR Horizon 1
32K, Double Density $2129

DISK OPERATING SYSTEMS

PACKPAK #4 by Percom Data $8.95
CP/M for Model I, Zenith $14.95 • for Model II, Altos $169.00
NEWDOS PLUS with over 200 modifications $35.95
and corrections to TRS-DOS $40 or 70 Track $99.00

CP/M BASED SOFTWARE for Zenith, Altos, Radio Shack, Apple

MICROSOFT

BASIC-80: Disk Extended BASIC ANSI compatible with long variable names, WHILE-ENDWEND, changing variable length file records.
$140.75
BASIC COMPILER: Language compatible with BASIC-80 and 3 to 5 times faster execution. Produces standards compatible machine language. Includes MICROCOско® 80 Also linkable to FORTRAN-80 or COBOL code.
$500.00
FORTRAN-80: ANSI compatible for COMPLEX plus many extensions including variable object components. Includes MICROCOско® 80 Also linkable to FORTRAN-80 or COBOL code.
$740.00
MICROCOско® - 80: ANSI compatible, full version including variables and many extensions. Includes MICROCOско® 80 Also linkable to FORTRAN-80 or COBOL code.
$990.00

CIMITRON: Level 1 "ANSI standard COBOL" plus most of Level 2. Full sequential, relative and indexed file names. TRAP, INTERRUPT, COMPUTE, COMPUTEYUNG, UNTIL, EXTEND, CALL, COPY, SEARCH, 3-dimensional arrays, argument, function, procedure, and conditionally defined variables, nested IF, Power- ful interactive screen-handling extensions, includes compatible assembler, linking loader, and relocatable library as described under MICROCOско® 80. $990.00

2-80 SOFTWARE FOR APPLE: Your key to future software expansion. Get the best of both worlds, Apple's 6502 and CP/M 2.60. Plug in the card and get it all. $280.00

MICROPRO-WORDSTAR: Memo driven visual word processing system for use with standard terminals. Custom formatted on screen. Facilities for text page, number, justify, center, and underlines. User can print one document while simultaneously editing a second. Edit facilities include global search and replace. Write to other text files, block move, etc. Requires CRT terminal with addressable cursor positioning. $399.00

BBS CD-COMPILER: Supports most features of language, including structures, arrays, pointers, recursive function evaluation, and overlays. Package contains: compiler, linker, library manager, sample source files include games, a terminal emulator with CRT editor, and a comprehensive user's guide Book: *The C Programming Language* by Brian Kernighan and Dennis Ritchie. Requested. $795.00

24K of RAM $125.00

CONFIGURABLE BUSINESS SYSTEM by DMA: CBS is a data management system that allows true interactive action processing. Custom accounting systems for payroll, receivables, inventory control, order entry, and general ledger can be set up without using any programming languages. CBS can be used to define an accounting system using existing business rules, or used to describe activities such as purchases and sales. An extremely easy-to-use data entry program is used to enter information about customers, vendors, inventory and sales records. After data entry is complete, an update program can process the transactions for the appropriate master file, update account balances in the various accounts, and produce the necessary reports. $1995.00

CC-TELNET VERSION 5: A communication Package which enables microcomputer users to communicate both through telephone lines and other microcomputer sites. This version supports Trivial File Transfer, direct modem connection, remote Logins, remote sessions, expert multi-media, and other communications capabilities. $1995.00

Microcomputing, August 1980 95

WE WILL NOT BE UNDERSOLD

DEALER (NATIONAL/INTERNATIONAL) INQUIRIES INVITED

Send for FREE Catalogue

The CPU SHOP
TO ORDER CALL TOLL FREE 1-800-343-6522
Massachusetts residents call (617)242-3361
For detailed technical information, call 617/242-3361
Hours: 10AM-6PM (EST) M-F (Sat. till 5)
*TRS-80® is a Tandy Corporation Trademark

5 Dexter Row, Dept. K8M
Charlestown, Massachusetts 02129

Massachusetts residents add 5% sales tax

Quantities on some items are limited

Reader Service index—page 241

Microcomputing, August 1980 95
Series on enhancing the PET's capabilities continues with a description of joystick interfacing.

Many games and interactive computer programs can become more pleasant and efficient to use with the addition of joysticks. For complex, high-performance computers, a full range of freedom in joysticks is appropriate; but for home computers, joysticks have four switches that move the cursor in four directions. These joysticks often do not provide a method to directly control the cursor in the diagonal direction.

Hardware

You can readily implement professional joysticks that control the cursor in a diagonal direction with the addition of four 100k Ohm potentiometers (Photo 1). These are readily available through many of the electronic magazine advertisers at approximately $5 each.

You need a simple 3 x 4 inch printed circuit board to interface the joysticks via the "Expander" (June 1980, p. 58) to the computer I/O port. Fig. 1 presents the full-size pattern of the printed circuit board. If the joysticks are wired as indicated in Fig. 2, the resistances in Table 1 will be observed at the four potentiometers of the joysticks.

The PET I/O port, when programmed for input, will essentially ignore a 100k Ohm input and remain high (1). If the input is grounded, then the I/O port will recognize this as a 0. Consequently, peeking the input port will result in the decimal values shown in Table 2.

The joysticks can be housed in any case of appropriate size. I chose to use a 5 x 3 x 2 inch aluminum box. Photo 2 shows the completed joysticks. The switch on the box is used as a "FIRE" button, useful for many games. Fig. 2 illustrates how these switches are tied into the joystick system. Essentially, when depressed, the switch brings all four inputs to the computer to ground (binary 0000 left, 0000 right or decimal 0 left, 0 right). Any program using joysticks as inputs and requiring a "FIRE" in-

Fig. 1. Printed circuit board (full size).
dication would simply test for these values.

Software

Having completed the joysticks, you are now ready to enter Listing 1, which contains a simple BASIC program to maneuver two cursors across the screen and a children's game, called "YOU'RE IT." Although the program listing is self-docu-

<table>
<thead>
<tr>
<th>Position (in degrees)</th>
<th>Resistance Potentiometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>100k</td>
</tr>
<tr>
<td>90</td>
<td>100k</td>
</tr>
<tr>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>225</td>
<td>0</td>
</tr>
<tr>
<td>270</td>
<td>0</td>
</tr>
<tr>
<td>315</td>
<td>0</td>
</tr>
<tr>
<td>100k</td>
<td>100k</td>
</tr>
<tr>
<td>100k</td>
<td>100k</td>
</tr>
<tr>
<td>100k</td>
<td>100k</td>
</tr>
</tbody>
</table>

Table 1.

<table>
<thead>
<tr>
<th>Position (degrees)</th>
<th>Left Joystick</th>
<th>Right Joystick</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>224</td>
<td>14</td>
</tr>
<tr>
<td>45</td>
<td>96</td>
<td>6</td>
</tr>
<tr>
<td>90</td>
<td>112</td>
<td>7</td>
</tr>
<tr>
<td>135</td>
<td>48</td>
<td>3</td>
</tr>
<tr>
<td>180</td>
<td>176</td>
<td>11</td>
</tr>
<tr>
<td>225</td>
<td>144</td>
<td>9</td>
</tr>
<tr>
<td>270</td>
<td>208</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 2.

2 — Joysticks w/four potentiometers
1 — 6 foot DIN cable. Cut in half.
D1-D4 = 1N914
S1,S2 = N.O. MOM contact switch
Misc. — Hardware, Aluminum Box, Wire

Table 3. Parts list.

1030 look the same. If different-looking cursors are required, different values must be poked to screen memory; a solid white cursor is screen value 160. To speed up cursor movement, the programs must be written in machine language. Additionally, the "FIRE" switch in this case could be used to change the speed of cursor movement.

Conclusion

A joystick is invaluable for serious interactive computer work. The joystick controller in this article is more intricate than the video game joysticks, but less complex than those used on expensive computers. They are versatile and low in cost. The simple BASIC program presented in this article illustrates the simplest method to control the cursors via joysticks; the game, although very basic, provides hours of enjoyment for children.

Listing 1. Program for the joystick.

```
5 REM *** JOYSTICK ROUTINE ***
6 PRINT "L"
10 REM **OPEN USER PORT FOR READ**
20 POKE 59459, 0
30 REM **INITIALIZE CURSORS**
40 XL=8:YL=0:XR=39:YR=24
50 GOSUB 1000
60 REM **LOOK AT LEFT JOYSTICK**
70 A=PEEK(59471) AND 240
80 REM **DETERMINE POSITION**
90 GOSUB 2000
100 XL=XL+x:Y=YL+Y
110 REM **WRAP AROUND**
120 GOSUB 3000
130 REM **LOOK AT RIGHT JOYSTICK**
140 A=PEEK(59471) AND 15
150 REM **DETERMINE POSITION**
160 GOSUB 2000
170 XR=XR+x:YR=FR+Y
180 REM **WRAP AROUND**
190 GOSUB 4000
200 REM **DISPLAY CURSORS**
205 POKE Z,32:POKE Z1,32
210 GOSUB 1000
220 REM **GAME**
230 GOSUB 5000
240 GOTO 70
250 END
```

Photo 1. Potentiometers used in the PET joystick.

Photo 2. Completed joystick.

Fig. 3.

Fig. 2. Wiring the joystick.
COMPUTERS

Level-II 4K System.. 529.00
Level-II 16K System... 659.00
Model-II 64K System... 3499.00

DISK DRIVES

40 Track 5¼ inch drive................................... 319.00
77 Track 5¼ inch drive.................................... 549.00
4 Disk Drive Cable.. 39.00

PRINTERS

Centronics 730... 899.00
Centronics 779-2.. 999.00
Comprint 912p.. 599.00
Integral Data 440C... 999.00
NEC 5510 w-tractor...................................... 2679.00
TI 810 Basic... 1895.00

MISC HARDWARE

Expansion int. TRS-80(Okl).............................. 249.00
Novation Cat modem...................................... 159.00
16K Memory Kit... 49.00
Leedex Monitor.. 109.00
Printer Cable for above................................. 49.00
ISO-2 Isolator.. 54.00
AC LINE FILTER.. 24.00

STORAGE MEDIA

Verbatim-box 10-5¼...................................... 25.00
Memorex-box 10-5¼...................................... 22.00
Plastic Storage Box.. 5.00

OPERATING SYSTEMS

NEWDOS by APPARAT INC................................. 49.00
NEWDOS+ by APPARAT INC............................... 99.00
MMS FORTH DISKETTE-PRIMER.......................... 64.95

DISKETTE TRS-80* BUSINESS SOFTWARE BY SBSG

Free enhancements and upgrades to registered owners for the cost of media and mailing. 30 day free telephone support. User reference on request.
Fully Interactive Accounting Package, General Ledger, Accounts Payable, Accounts Receivable and Payroll, Report Generating,
Complete Package (requires 3 or 4 drives)................. $475.00
Individual Modules (requires 2 or 3 drives)................. $125.00
Inventory II: (requires 2 or 3 drives)...................... $ 99.00
Mailing List Name & Address II (requires 2 drives) $129.00
Intelligent Terminal System ST-80 III:....................... $150.00
The Electric Pencil from Michael Shrayer.................. $150.00
File Management System:................................ $ 49.00

FINE PRINT

TRS-80 is a Tandy Corporation trademark. Use of above operating systems may require the use of Radio Shack TRS-DOS. Radio Shack equipment subject to the will and whim of Radio Shack.

ORDERING INFORMATION

We accept Visa and Mastercharge. We ship C.O.D. certified check or money orders only. All orders must include 4 percent for shipping and handling. Massachusetts residents add 5 percent sales tax.
The Company cannot be liable for pictorial or typographical inaccuracies.

3000 REM *** WRAP AROUND ***
3810 IF XL>39 THEN XL=39
3820 IF XL<0 THEN XL=0
3830 IF YL>24 THEN YL=24
3840 IF YL<0 THEN YL=0
3850 RETURN
4000 REM *** WRAP AROUND ***
4810 IF XR>39 THEN XR=39
4820 IF XR<0 THEN XR=0
4830 IF YR>24 THEN YR=24
4840 IF YR<0 THEN YR=0
4850 RETURN

Listing 2. Program modification.
Attention

BARGAIN HUNTERS

Receive Hundreds of Classified Ads
Like These Every Month

HARD DISK DRIVE Diablo Mod 31
1.2 Mbyte std. density. Includes power supp. and cable, rack mount slides, and manual. Excellent condition $450.

IMPACT PRINTER 165 CPS Serial 13
and parallel interfaces-Eight selectable character sizes-Single and double width characters—same standard plain paper—same mechanism as the integral data system.

FOR SALE: Interdata (Perkin-Elmer) 7/16 Mini with 32KB core, front panel, 50A PWR supply. Includes HS tape reader, interfaces for LP, 2 (TTY), and RS-232 (full duplex, programmable). Includes manuals and much SW (Basic, Fortran, OS etc.). $800 - After 6 P.M.

WANTED: DIGITAL Group 32K memory board with memory chips and Phi deck controller board (kit, assembled or not working). W. 1530 NW 35th.

PET COMPUTERS 11 Pet business system priced to sell. PET2001-16K Computer $800. 2040 Dual Floppy, 340K (holds more data than 6 TRS-80 disks) $1,100. Digital cassette (2) $60 each. System complete with Text Editor, disk sort, database software, real estate software and more $2,100. Call PAUL (313)971-8447.

COMPUTER SHOPPER, the new buy, sell, and trade publication, is ready to help you with the latest information on personal, small business and large-system computers, accessories and software.

Each ad-packed issue is full of bargains you are looking for. Included are ads from individuals throughout the United States who are selling their good, pre-owned equipment just so they can trade-up to new equipment coming on the market.

But, COMPUTER SHOPPER'S bargains won't be yours unless you subscribe. This useful, money-saving publication can become your way to communicate with other buyers, sellers, and traders all over the nation.

Whether you are a hobbyist or a part-time user, COMPUTER SHOPPER will put you in touch with the nationwide computer marketplace in time for you to take advantage of bargain opportunities.

Have something to sell? A COMPUTER SHOPPER subscriber probably wants to buy it.

Looking for a part, component or even a complete system? A COMPUTER SHOPPER subscriber probably wants to sell it.

COMPUTER SHOPPER is THE marketplace for anything in computers and is read by thousands of people who are ready to buy.

COMPUTER SHOPPER offers a unique format in which classified ads are categorized for fast location of specific items. Combining this with low individual ad rates — 10 cents a word makes it the ideal place for buyers and sellers to communicate. And, its mix of individual, dealer, and manufacturer ads enable subscribers to find what they want at the best price possible.

COMPUTER SHOPPER will work for you in other ways, too. If you are just thinking about getting into computers, it can help you learn product availability and prices before you make a decision. And, through the timely ads, COMPUTER SHOPPER will keep you abreast of changes in the market which could create bargain opportunities for you.

BUT COMPUTER SHOPPER cannot work for you unless you subscribe.

Want to look us over first? We'll give you your first issue FREE and then bill you for the next 12. If you are not convinced COMPUTER SHOPPER suits your needs, just write "cancel" on the invoice and return it.

And, to let COMPUTER SHOPPER start working for you right now, with a paid subscription we'll also give you a FREE classified ad to sell your pre-owned equipment or to find equipment you want.

If you don't need to use the free classified ad now, use it anytime during your subscription.

Subscription: $10/year, 12 issues plus your first free one. Bank cards accepted. Money back guarantee.
Slaying the 80-Column Dragon

The author/knight-errant searches this fair land and finds not one, but three honest manufacturers of 80-column boards for the Apple II.

Michael S. Tomczyk
418 Arguello Blvd., Suite 2
San Francisco, CA 94118

It's been said for a long time that whoever came up with an 80-column board for the Apple II would be a hero. During the fast few months, several groups of heroes have slain the 80-column dragon, and the implications for Apple II users are enormous.

There are three boards currently available, and more are on the horizon. First on the scene was Sup'R'Terminal from M&R Enterprises, followed closely by Doublevision from Computer Stop and Videoterm from Videx.

After using all three boards and meeting the various dragon-slayers, I still don't know which board is best. All three boards are more or less comparably priced ($295-$395), convert the Apple II display to 80 columns upper/lowercase, work with Pascal and the Apple BASICS and have different drawbacks, advantages and trade-offs.

Before the advent of these boards, you were confined to 40-column, uppercase displays on your Apple video monitor. But the standard typewriter page is 80 columns across, so how could you do word processing? How could you use Pascal, which is formatted for 80 columns? How could you access advanced time-sharing programs, all geared to 80 columns?

It was possible to do these functions, but with great difficulty. For example, you could print out 80 columns of upper/lowercase information, but you could only view 40 columns on your monitor. The new 80-column boards solve the problem, each in a slightly different way. To help sort out the differences between the boards, I've included a chart (see Table 1) showing their comparative features.

One of the best features of these plug-in boards is their compatibility with Pascal. You can now take full advantage of this versatile high-level language in the 80-column format it was originally intended for.

However, you have to use a video monitor—not a television set—to display the characters because with 80 columns you have to use smaller characters, which don't display well on a coarse-resolution television screen. If you use your Apple with a television set, you have to buy a separate black and white video monitor to display 80 columns. Also, you can't use any of the 80-column boards with Apple's hi-res graphics or color.

Sup'R'Terminal

The largest of the three boards, the Sup'R'Terminal from M&R Enterprises, includes the most firmware and the most special features. The character set is excellent, with true descenders, and there are two ingenious adjustments on the board which fine-tune the monitor display. The video balance circuit (VBC) tones down the horizontal portions of individual letters (such as the top of the letter T) that are normally displayed much brighter than the ver-
Sup'RTerminal and Doublevision are two computer stop alternatives. Doublevision also includes VIC text graphics and most applications allow VIC monitor connection. However, the power supply isn't provided with Doublevision.

Apple II also has a power problem that is not tied to any one board or group of boards. You run the risk of overtaxing the power supply because the total power drain of all the boards is likely to be greater than the specifications set down by Apple. There are several combinations of plug-in boards and peripherals that can cause this problem, but, unfortunately, not all boards reveal how much power they use, so it's hard to determine whether the limit has been approached. The best interim solution is to use plug-in boards to replace those that are filled in a fully configured system.

Doublevision
Doublevision from Computer Stop differs
Doublevisor is the least expensive of the three boards ($295) and provides excellent 80-column power at the lower end of the kilobuck range.

Videoterm

Like Doublevisor, Videoterm by Videx created a lot of excitement when it was introduced at the Computer Faire. It offers the most technically well-documented manual of all the boards, although it seems a trifle weak in the explanation and use of board functions.

Because of the unique full-screen character set format, the display tends to spill off the screen around the edges and requires you to adjust the horizontal and vertical screen size controls, which are located inside most monitors. Videx claims their board works best with the Leedex monitor.

Videoterm also has an inexpensive ($12) switchplate, which enables you to access either the Apple 40-column display or the Videoterm 80-column display on the same monitor simply by flicking a switch. For example, you can go back to the Apple display system for graphics without having to unplug the monitor from the board and plug it back into the Apple, which you have to do with Sup'R'Terminal and Doublevisor.

By using a character set EPROM, you can define your own character sets or graphics, although you need an EPROM programmer to do this. Videotex conveniently sells a variety of predefined EPROMs that you can use to change fonts simply by substituting the EPROM chip.

Videotex also has a pre-defined graphics set built into the system. The set essentially lets you do the line-drawing and is especially helpful if you want to create business forms or graphs. The documentation showing how to use this feature is clever.

The major drawback of the Videotex board is its awkward shift command. The other boards provide a single-letter shift key that automatically shifts back down after execution. Every time you capitalize a single letter with Videoterm, you must type a command to get into the uppercase mode, then type another command to go to lowercase. However, Videotex is already solving this problem with a new product: a PC board you substitute for one of the IC chips to convert the "old" Apple keyboard to the "new" keyboard. It turns the shift key into a normal shift key and provides a CTRL RESET function, with no special hardware modification. It can be used to convert any Apple.

With the other boards, you need a one-wire modification to convert the shift key to...
a normal shift key used in ordinary typing. Sup’R’Terminal shows you how to make this modification in their manual, although this mod will void your warranty. I suggest making this modification if you buy a Sup’R’Terminal or Doublevision, especially if you do a lot of word processing.

On the Horizon

Another 80-column Apple board I did not include in Table 1 was developed by Chuck Mauro, a 21-year-old Apple computer engineer who developed the board in his spare time and has recently started production. The board uses Synertek’s new 6545 chip, which provides a little extra capacity and allows for some extra features, such as medium resolution (160 x 72 lines) vector graphics, which may be used simultaneously with text (in black and white). This asynchronous board provides normal functioning tabs and has an inverse mode and keyboard-controlled monitor switching (like Videoterm’s switchplate, only you control from the keyboard).

Chuck’s board, tentatively priced at $360, will be sold through Apple dealerships under the corporate name “Sum Apple Software.”

Outlook for 80-Column Boards

It’s obvious that the makers of these boards will be successful, because most Apple users want 80 columns and the special features described above. However, the market for these boards is not infinite. Apple III will definitely provide an 80-column format. Thus, while Apple IIs may continue to be sold, the market for 80-column boards will start falling off next year.

This means that the entrepreneur-engineer-inventors who are lauded today as mighty dragon-slayers will have to stay even more dragons early next year to keep going. Most of the board designers I talked to are already working on new products, so keep an eye on these companies to see what happens.

DISK SORT MERGE ‘DSM’ FOR MOD I AND MOD II TRS-80™

FAST —

Now you can sort an 85K diskette in less than 3 minutes.*

Perfect for your multi-diskette RANDOM file mailing lists, inventory, etc. Ideal for specialized report generation. Sort, merge, or combination. All machine language stand-alone package — Efficient and easy to use. No separate key files required! Physical records are rearranged on diskette! Supports multiple sub records per sector including optional sector spanning. Sorts on one or more fields — ascending or descending. Sort fields within records may be character, integer, and floating-point binary. Provides optional output file deletion, rearrangement, and padding.

*Sort timings shown below are nominal times. Times will vary based on sort and system configurations. Nominal times based on Mod I 48K 4-drive configuration, 8 byte records, and 5 sort keys.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FILE SIZE</th>
<th>SORT TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bytes)</td>
<td>(Sec)</td>
<td>(Sec)</td>
</tr>
<tr>
<td>SORT</td>
<td>8K/31</td>
<td>140K/250</td>
</tr>
<tr>
<td>SORT</td>
<td>16K/51</td>
<td>280K/286</td>
</tr>
<tr>
<td>SORT</td>
<td>32K/97</td>
<td>560K/256</td>
</tr>
<tr>
<td>SORT</td>
<td>64K/261</td>
<td>800K/225</td>
</tr>
<tr>
<td>MERGE</td>
<td>80K/445</td>
<td>1275/t56</td>
</tr>
</tbody>
</table>

DSM for Mod I (Minimum 32K, 2-drives) $75 On-Disk

DSM for Mod II (Minimum 64K, 1-drive) $150 On-Disk

Mod II Development Package $100

Machine Language SUPERZAP, plus Editor/Assembler and Disassembler patches. (Include copy of Appart NEWDOS + 5½ diskette.)

Mod II Generalized Subroutine Facility ‘GSF’ $50

⇒ BASIC for Level II and Disk Systems $49.95
⇒ BUSINESS (Requires Infinite BASIC) $29.95
⇒ Command Processor for Disk Systems $19.95
⇒ REMODEL + LOAD (Specify 16, 32, or 48K Memory) $34.95
⇒ GSF (Specify 16, 32, or 48K) $24.95

CHECK, VISA, M/C, C.O.D.

Call Residents add 6%

TRCADE COMPUTES

(714) 637-5016

TEXAS INSTRUMENTS

TI-99/4 HOME COMPUTER

99/4 Console List: $160.
Our Price: **$845.**

13” Color Monitor List: $60. Our Price: **$419.**

PASCAL LANGUAGE SYSTEM

Our Price: **$438.**

For Other Equipment Not Listed Please Call For Our Special Price. (310) 336-7710

SYSTEMS SOFTWARE

for

OHIO SCIENTIFIC

to Emerson — MCB

XPLO Compiler

XPLO is a fast mid-level language with many features similar to Pascal. It’s an off-line assembler for Multi-System Systems. A/65 accepts all standard MOS mnemonics and even prints a sorted symbol table for a great reduction in development time. Available on 8" floppy disk only for $75.

A/65 Assembler

A/65 is a fully disk-based 6502 assembler. This means there’s practically no limit to the size program that can be assembled. A/65 accepts all standard MOS mnemonics and even prints a sorted symbol table for a great reduction in development time. Available on 8" floppy disk only for $75.

TRACE

TRACE, a powerful machine language debugging tool, allows single-step and continuous tracing of machine code, including ROM. It displays all registers, complete processor status and mnemonic disassembly.

This package is a must for getting in and seeing how OSI’s software works. TRACE includes a relocater so you can put it wherever you need it. Comes on 8" floppy for $95.

PEGASUS SOFTWARE

P.O. BOX 10014, DEPT. K-1,

HONOLULU, HAWAII 96816 (808) 735-5013
SPECIAL SUPER SAVINGS

NO CREDIT CARD ORDERS ACCEPTED

VERBATIM

FOR TRS-80, PET, APPLE, HEATH

(Please specify which computer)

#P007XS
5 1/4" 10 PACK...ONLY $24
Plus $2.50 shipping & handling

#P015XS
8" 10 PACK......ONLY $36
Plus $2.50 shipping & handling

LEVEL II 16K COMPLETE

LATEST KEYBOARD, FULL FACTORY WARRANTY in factory carton...

NEW...$690.00

ORDER #TRS-001XISI...no extra discounts...cashier's checks, personal checks, or money orders only...no credit cards. See TRS TERMS for shipping details.

FREE with any TRS-80 LEVEL II or ACCESSORY ORDER

Your choice of any $7.95 Instant Software Cassette (See Instant Software ad for list of programs.)

APPLe II

16K $965
32K $1040

PLUS FREE INSTANT SOFTWARE APPLE $7.95 CASSETTE—YOUR CHOICE—(SEE INSTANT SOFTWARE AD)

ATARI

MODEL 400 $490
MODEL 800 $775

#820 PRINTER $445
#810 DISK DRIVE $520

TERMS: Same as "TRS TERMS."

No extra discounts for Apple or Atari items

CAUTION

Our phone is usually answered by machine. Orders taken with credit cards. Questions answered by mail. Please leave your name and address clearly.

TRS-80 MODEL II 64K

$3400.00

SEE TRS TERMS
This gadget fits into most dashboards... no strain even in a tiny sports car like the Mazda RX-7... and once you have it, every trip is like flying a 747. The darned thing tells you the time, how fast you’re going, how far you’ve been on this trip or since the last recharging, how many miles per gallon you’re getting, either at the instant or the average on the trip... or gallons per hour at the moment or for the trip... temperature outside... inside (or coolant temperature, if you prefer)... oh, it has an elapsed time for the trip, a stop watch, a trip meter, an alarm, how much futher for your trip, how many gallons more the trip will take, how much longer for the trip at your present speed... yes, it gives you your average speed for the trip. You prefer it in metric, no strain... here’s remaining, etc. Did we mention that it also has cruise control either at a speed set on the control board or at whatever you're going, traveling? The Compucruise will keep you busy and entertained during any trip... telling you more than you will ever want to know.

The Compucruise is not difficult to install... though it does connect to everything except the cigarette lighter. Until you’ve tried computerized travel, you haven’t found out how much fun driving can be. It will work on any car not having fuel injection... and there is a front-wheel drive accessory gadget available for only $4.95. (Regularly $5.50.) The price for the Compucruise is regularly $199.95... and a bargain at that price. We’ll tell you one of these fantastic gadgets for $199.95 with cruise control (Model 44-7002), and $127.95 without (Model 41-p003). Send money... and start having fun!

BOOK CLEARANCE
50% OFF OR MORE!
How To Buy And Use Minis And Micros (Sams-Publisher) #8005—was $95 now $5.
How To Program Microcomputers (Sams-Publisher) #1025—was $130 now $64.
BBS400 Bugaboo (Sams-publisher) #861008—was $39.95 now $15.
Understanding Microcomputers (SiliPub) #801—was $19.95 now $5.95.
Your Own Computer (Sams-Publisher) #7027—was $19.95 now $9.50.
Underground Buying Guide (PMS-publisher) #801176—was $3.45 now $2.50.
Periodical Guide (Berg pub) #801121—was $3 now $1.50.
Compucom Guide (Berg pub) #1025—was $3 now $1.50.
Computer Book (Tab-publisher) #1025—was $7.95 now $4.

VECTOR GRAPHIC
S-100
Vector Graphic ROM/RAM card—128 em-ty ROM sockets, 13K RAM, excellent condition. No documentation. Make offer—we may surprise you and accept! #D0078S-X95.

HEAD ALIGNMENT KIT
Best cassette recorder tape head alignment kit available. Solves loading problems. #K001-only $9.95.

5% EXTRA DISCOUNT for orders with checks or money orders (see "TERMS" for details). ITEMS THIS PAGE ONLY.

ORDER NOW—
Prices subject to change without notice.

Microcomputing, August 1980 105

Please note: Reader Service index—page 241
Graphics Character Generator

You can mix text and graphics anywhere on your Apple II screen with this CHAR-GRAF program.

Robin B. Moore
Warner Hill Rd., RFD #5
Derry, NH 03038

One of the nicest features of the Apple II computer is its high-resolution bit-mapped graphics display mode. It can be used for graphs, plots, digitized photographs or colorful, arcade-quality video games. Its only significant limitation is its inability to fully mix text and graphics.

Normally, text is assigned only to the bottom four lines of the screen in the hi-res graphics mode. This is not hard to live with, but it would be nice to mix text and graphics anywhere on the screen. Another improvement is the addition of lowercase and user-definable characters.

These two minor changes would create a machine with video display flexibility unmatched in the current personal computer market. There is nothing to prevent the Apple from displaying text on the hi-res screen. It simply isn’t programmed to do so!

The Program

CHAR-GRAF is a package of assembly-language software that will allow you to add the following features to your Apple II:

- Fully mixed text and graphics in hi-res mode.
- Lowercase and uppercase characters.
- User-definable scientific and game characters.
- Multiple resident character sets.
- An invert the hi-res screen function.

These can be added without hardware changes. It will take a little time to type all the code into your Apple, but you will only have to do it once.

I designed CHAR-GRAF to be as compatible with existing Apple software as possible. It resides in lower memory along with the Apple II hi-res graphics routines that are provided by Apple as the first part of the hi-res demo tape. Its operation requires the presence of these routines. (If you are using the routines in the Programmer’s Aid #1 ROM, also from Apple, CHAR-GRAF will require only minor changes.)

Printing text onto the hi-res screen with CHAR-GRAF is accomplished using normal PRINT statements. Text is displayed in the same 5 x 7 dot matrix format that is normally used by the Apple and will appear on the screen in its normal positions. VTABs and TABs will work as they normally do, as will user-defined scrolling windows.

In its present implementation, CHAR-GRAF will not scroll the hi-res screen, nor will it exhibit any response to the normally used screen clearing functions.

Listing 1. Assembler source code for the CHAR-GRAF routines.
This listing was created using the Microproducts assembler for the Apple II (which I have since abandoned, for many reasons). Base page symbols are shown preceded by an *.

0010 * TITLE CHAR-GRAF V1.3 *
0020 * *** *
0030 * CHAR-GRAF V1.3 *
0040 * *** *
0050 *
0060 * SOFT CHARACTER GENERATOR *
0070 * ROUTINES FOR THE APPLE II *
0080 *
0090 * LINKS TO BASIC VIA CWARE.H *
0100 * FOR AUTO ARGUMENT PASSING *
0110 *
0120 * COPYRIGHT 3/1/1979 BY *
0130 *
0132 * ROBIN B. MOORE *
0133 * WARNER HILL Rd. RFD # 5 *
0134 *
0135 *
0140 * ALL COMMERCIAL RIGHTS *
0142 *
0150 *
0160 *
0170 *
0180 *
0190 * LOCATION EQUATES *

<table>
<thead>
<tr>
<th>Address</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>TITLE</td>
</tr>
<tr>
<td>0020</td>
<td>***</td>
</tr>
<tr>
<td>0030</td>
<td>**********</td>
</tr>
<tr>
<td>0040</td>
<td>**********</td>
</tr>
<tr>
<td>0050</td>
<td></td>
</tr>
<tr>
<td>0060</td>
<td>SOFT</td>
</tr>
<tr>
<td>0070</td>
<td>ROUTINES</td>
</tr>
<tr>
<td>0080</td>
<td>FOR</td>
</tr>
<tr>
<td>0090</td>
<td>LINKS</td>
</tr>
<tr>
<td>0100</td>
<td>TO</td>
</tr>
<tr>
<td>0110</td>
<td>AUTO</td>
</tr>
<tr>
<td>0120</td>
<td>COPYRIGHT</td>
</tr>
<tr>
<td>0130</td>
<td>ROBIN</td>
</tr>
<tr>
<td>0132</td>
<td>B. MOORE</td>
</tr>
<tr>
<td>0133</td>
<td>WARNER</td>
</tr>
<tr>
<td>0134</td>
<td>HILL</td>
</tr>
<tr>
<td>0135</td>
<td></td>
</tr>
<tr>
<td>0140</td>
<td>ALL</td>
</tr>
<tr>
<td>0142</td>
<td>RIGHTS</td>
</tr>
</tbody>
</table>

0200 *
0210 *
0215 DEC16 DEC01C SHAPEFILL COLOR
0220 TPL0 DEC01E TABLE PTR L
0230 TPH0 DEC01F TABLE PTR H
0240 WINDOW0 DEC021 WINDOW WIDTH
0250 CH0 DEC024 CURSOR HORIZ
0260 GESL0 DEC026 HIRES BASE ADDL
0270 GESH0 DEC027 HIRES BASE ADDH
0280 BASEL0 DEC028 TEXT BASE ADDL
0290 BASEH0 DEC029 TEXT BASE ADDH
0300 IFLG0 DEC032 INVERSE FLAG
0310 CSAD0 DEC036 CONSOLE PTR LO
0320 CSADH DEC037 CONSOLE PTR HI
0322 AIL DEC030 ADD PTR LO
0324 AIM DEC032 HI
0330 XAV DEC045 SAVED X-REG
0340 YSAV DEC046 SAVED Y-REG
0350 CS4V DEC047 SAVED CHAR CODE
0360 SFLO DEC048 SCREEN FREE FLAG
0370 MDCL DEC052 PLOT/LINE COLOR
0370 PAGE DEC052 HIRES PG 20/40
0380 TABL DEC053 TABLE BASE ADDL
0390 TAH0 DEC051 TABLE BASE ADDH
0400 COUT DEC120 APPLE OUTPUT
0410 *
0420 *
0426 * LINK IN AND INITIALIZE *
0440 * IN BASIC CALL 2040 *
0450 *
0460 *
0470 LINK FH *
0480 LDA 05 SETUP CWARE.H
0490 STA CSADH TO LINK THRU
0500 LDA 06 CGRAF ROUTINES
0510 STA CSAD disabling...
which must be accomplished manually through the use of TABs, VTABs and the hi-res screen clear functions. Limited areas may also be cleared by simply moving the cursor to the desired position and printing blanks.

These limitations are unfortunate, but after my experience writing the demo program and the Character Set Editor, I’ve found that they are not difficult to deal with. It is also easy to simulate the Apple’s normal flashing cursor in hi-res mode.

In part payment for the missing scroll and screen clear functions, I’ve added a few new ones. With a CALL to INVSRCR (2187), you can inverse-video the entire hi-res screen and also complement the current text mode and hi-res color. A CALL to STROKEOVER (2180) will set CHAR-GRAF into strokeover mode, causing its output to be ORed to the screen instead of overwriting as it normally would.

Also, I have added a pseudo-CHAR$ function. If you POKE an ASCII character code + 128 into CHARLOC (71) and then CALL CHARDRAW (2172), the equivalent character will be printed at the current cursor position.

How CHAR-GRAF Works

Whenever text is output by the Apple, control is passed to the output routine whose address is stored in two base-page locations called CWSL and CSWH ($36,$37). Normally, this is the video output routine in the monitor ROMs. When CHAR-GRAF IS in use, these pointers are changed to point to the entry address of its text output section. This is done easily from BASIC with a CALL LINK (2048).

The CWSL, CSWH pointers may be reset to their normal values with a PRM# command, which will turn off CHAR-GRAF. You will need to do a TEXT command to take the Apple out of hi-res mode if you wish to see any further text output.

To allow CHAR-GRAF to use a number of different character sets at once, there is another pointer set, TL and TH ($B1,$B7). These point to the beginning of the character set currently in use.

Changing character sets is done by changing these pointer
REALITY ENDS!

Reality Ends allows you to wander through over 200 parallel universes searching for a way to destroy the forces of Baldur. Will you attack Margon with your horde of fanatics to gain possession of the Amulet of Sang? Will you equip your marksmen with the finest weapons money can buy? Can you free the Book of Lore from the scaled monstaur with out becoming the next myal? Will you save reality from final dissolution?

Reality Ends is a full scale adventure with an extensive listable command set, over 200 fully described universes, and NO messy rule books that must be used to look up information as you play. Imaginative programming allows us to put in 16K what others only dream of doing in 32K.

We guarantee satisfaction or your money back within two weeks of receipt.

TRS-80 Level II 16K $99.95

Coming soon for APPLE, PET, SORCERER, and COMPSTAR.

Med Systems Software 129 VISA
P.O. Box 2674 Chapel Hill, NC 27514
Digital IC Probe & Logic Pulser

PRB-1 DIGITAL LOGIC PROBE
Compatible with DTL, TTL CMOS, MOS and Microprocessors using a 4 to 15V power supply. Thresholds automatically programmed. Automatic resetting memory. No adjustment required. Visual indication of logic levels, using LED's to show high, low, bad level or open circuit logic and pulses. Highly sophisticated, shirt-pocket portable (protective tip cap and removable coil cord).

- Automatic threshold resetting • DE to > 50 MHZ
- Compatible with all logic families 4-15 VDC • 10 Nsec. pulse response
- Supply O.V.P. to ± 70 VDC • 120 K ohm impedance
- No switches/no calibration • Automatic pulse stretching to 60 Msec.
- Open circuit detection • Automatic resetting memory
- Range extended to 15-28 VDC with optional PA-1 adapter

PLS-1 LOGIC PULSER
The PLS-1 logic pulser will superimpose a dynamic pulse train (20 pps) or a single pulse onto the circuit node under test. There is no need to unsolder pins or cut printed-circuit traces even when these nodes are being clamped by digital outputs.

PLS-1 is a multi-mode, high current pulse generator packaged in a hand-held shirt pocket portable instrument. It can source or sink sufficient current to force saturated output transistors in digital circuits into the opposite logic state. Signal injection is by means of a pushbutton switch near the probe tip. When the button is depressed, a single high-going or low-going pulse of 2μ sec wide is delivered to the circuit node under test. Pulse polarity is automatic: high nodes are pulsed low and low nodes are pulsed high. Holding the button down delivers a series of pulses of 20 pps to the circuit under test.

- High input impedance (off state) 1 meg ohm • Multi-mode single pulses or pulse trains
- Low output impedance (active state) 2 ohms • Automatic polarity sensing
- Output pulse width 2 μsec nominal • Automatic current limiting; 7 amperes nominal
- Input over voltage protection ±50 volts • Automatically programmed output level
- Finger-tip push button actuated • Circuit powered
- Power lead reversal protection • No adjustments required

Multi-family RTL, DTL, TTL CMOS, MOS and Microprocessors.

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRB-1</td>
<td>DIGITAL LOGIC PROBE</td>
<td>$36.95</td>
</tr>
<tr>
<td>PC-1</td>
<td>POWER CORD, Alligator Clips</td>
<td>$4.95</td>
</tr>
<tr>
<td>PC-2</td>
<td>POWER CORD, Micro Hooks</td>
<td>$9.95</td>
</tr>
<tr>
<td>PA-1</td>
<td>HIGH VOLTAGE ADAPTER</td>
<td>$8.80</td>
</tr>
<tr>
<td>FT-2</td>
<td>REPLACEMENT PROBE TIP(2)</td>
<td>$1.60</td>
</tr>
<tr>
<td>PLS-1</td>
<td>LOGIC PULSER</td>
<td>$46.95</td>
</tr>
</tbody>
</table>

OK Machine & Tool Corporation
3455 Conner St., Bronx, N.Y. 10475 U.S.A.
Tel. (212) 994-6600 Telex 125091

*Minimum billing $25.00, add shipping charge $2.00
New York State residents add applicable tax
The 512-byte standard character set. Enter using the Apple
monitor. Actually, this set is not quite standard because
code 223 is changed to an Apple
character.

Listing 3. Hex dump of the
512-byte standard character
set. Enter using the Apple
monitor. Actually, this set is not quite standard because
code 223 is changed to an Apple
character.

Listing 4. Hex dump of the
512-byte lowercase special
character set. The special
characters include a mix of
game, utility and scientific/math characters. Enter
using the Apple monitor.

Character Set Format
Characters on the Apple II
are normally displayed as a
5 × 7 dot matrix within a
7 × 8 dot cell. There are 40
columns horizontally and 24 vertically, corresponding to
a 280-dot horizontal by 192-dot
vertical matrix. Coincidently,
"this is the exact format of the
hi-res screen, so it is easy for us
to emulate normal text opera-
tion.
Within the character sets
used by CHAR-GRAF, each
character is represented by
a group of eight bytes. Each byte
conforms to one row of dots
in the character cell. For each
character, the first byte repre-
sents the top row of dots in
the cell, and the seven following
bytes represent the second
through eighth rows. Within
each byte, bits 0–6 are mapped
onto the screen as dots from left
to right (see Fig. 1).

Character sets may contain
from one to 96 characters. The first
character in any set will be
interpreted as a space; follow-
ing characters will be inter-
preted in ascending ASCII
order. (The first character in
each set should be a blank
because it is used by CHAR-
GRAF to clear the rest of
the line when a return code is
received.)

Creating a character set by
hand is awkward at best. How-
ever, the Character Set Editor
program will allow you to
create new character sets or
edit existing ones with the
Apple doing most of the work.

Getting CHAR-GRAF to Run
Type in the contents of
Listing 3, check the contents of
the last few locations and save
the data on a tape using the
Apple monitor. The same
should be done for Listing 4 with
a separate tape. These two tapes
may hold the versions of the
standard 64-character set and
the 64-character lowercase,
scientific and game character
set.

Next, you should type in the
hex contents of Listing 2, check your
results with the Apple's
disassembler and save the data
on another section of tape.
These are the actual CHAR-
GRAF routines.

Now, load the Apple II hi-res
graphics routines into memory
at location $C00 as shown
on the front of your hi-res demo
cassette. The entire package
of character sets and routines
may now be saved to another
section of tape with an 8 .
11FFW command. This creates
an initial CHAR-GRAF package
tape. The other tapes are
backup, so that you can easily
correct individual parts of the

![Fig. 1. Within a character set, each character is represented by a
block of eight bytes, corresponding to the rows of dots in the
character. Note that bit 0 represents the leftmost dot in a row, and
bit 6 represents the rightmost. The location of the first byte in the set
for a given character is: set start location + 8 × (character
code—160).](image-url)
package.

Enter the contents of the demo program, load the CHAR- GRAF package tape and RUN the demo. If it runs properly, you're in good shape because it exercises all of the CHARGRAF functions. If not, at least you can have each section on a separate section of tape.

If there are mistakes in the CHARGRAF routines or the demo program, you will have to correct them now. Mistakes in the character sets will be easier to correct later after the Editor program is running.

Implementation

The STRIKEOVER function may be changed to an EXCLU- SIVE-OR function by changing location $86D from $01 to $51. This can be done from BASIC with a POKE 2157,1, and changed back with a POKE 2157,1. (Be careful! You are actually modifying the CHARGRAF code.)

To use CHARGRAF with hi-res routines in Apple's Programmer's Aid #1 ROM, you must make the changes in the box below to CHARGRAF.

The June '79 issue of CALL

A.P.P.L.E. contains a machine-language linker program by Andy Hertzfeld that appears to be the best available way of attaching machine-language rou- tines to an Apple Integer BASIC program. I use this routine to save the CHARGRAF package along with the BASIC program using it.

Note that CHARGRAF uses the same screen pointer loca- tions used by the Apple hi-res routines. This means that after using CHARGRAF to print some text, the hi-res position will be left somewhere in the bottom row of the last character printed, and the old position will be forgotten.

The Demo Program

The demo program, written in BASIC, demonstrates all of the current CHARGRAF functions. It requires the Apple hi-res graphics routines and both character sets to be resident in memory with it. Notice that most of the PEEK, POKE and CALL locations are assigned as values to descriptive variable names. This allows the use of such statements as:

CALL STRIKEOVER and POKE XL0,5
rather than
CALL 2180 and POKE 800,5

This nice feature of Apple's BASIC allows programs to be more self-documenting than usual and easier to write. Useful routines in the demo program are found at lines 360, 450 and 570. Comments are included.

Character Set Editor

The Character Set Editor pro- gram was a result born of my frustration with creating char- acter sets by hand. I had invari- ably made mistakes—either typos, dropped bytes on input or, in one case, a set completely transposed left to right. (I wrote a short program to correct that one!)

I decided to write the editor to do as much work as possible for me. It took much longer to write than it took to write CHARGRAF in the first place, but the time spent was worth it. I could now create a whole new character set in about a half hour with no errors.

Editor Description

The editor is designed to allow the user to manipulate character sets in variety of ways. Its capabilities include:

- Storage and retrieval of character sets from tape or disk
- Editing existing character sets
- Creating new character sets
- Displaying character sets
- Creating CHARGRAF pack- ages on tape with one or two character sets included

The editor is currently de- signed to handle sets of up to 64 characters. However, larger sets are easy to create in sections,
Listing 5. CHAR-GRAF demo program, which creates screen display using both character sets and exercises all of the CHAR-GRAF functions. It also serves as an example of ways to use CHAR-GRAF.

0 REM ***
10 REM * COPYRIGHT 1979 *
20 REM * R B MOORE *
30 REM * ALL COMMERCIAL RIGHTS *
40 REM * RESERVED *
50 REM ***
85 GOSUB 580: REM **SET LDREM:4600
data
90 GOSUB 500: REM ** INIT PROG
95 REM
100 REM ** DO DEMO **
105 REM
110 CALL INIT: POKE -16302,0: CALL NONINV: CALL HOME: CALL LINK:
115 REM 2. PRINT "CHAR-GRAF": T*="GRAPHICS": GOSUB 450: T*="GENERATOR "
120 REM GOSUB 450: T*="TEXT AND": GOSUB 450
125 REM
130 REM ** DRAW LINE UNDER TITLE **
135 REM
140 REM POKE HY,9: POKE XHI,0: POKE XLO,7: CALL POSN: POKE XHI,1: POKE XLO,17: CALL LINE
145 REM
150 REM ** UNDERLINE TITLES **
155 REM
160 REM POKE XHI,0: POKE XLO,0: POKE HY,24: CALL POSN: POKE XLO,69: CALL LINE
165 REM
170 REM ** DRAW INVERSE VIDEO **
175 REM
180 REM CALL INV: VTAB 14: TAB 30: PRINT "INVERSE ": VTAB 15: TAB 30
185 REM
190 REM CALL PRINT "INVERT " : VTAB 16: TAB 30: PRINT " ":
195 REM
200 REM VTAB 17: TAB 30: GOSUB 470: CALL NONINV
205 REM
210 REM ** SHOW USER CHARACTERS **
215 REM
220 REM GOSUB 450: T*="USER": GOSUB 450: TAB 9: TAB 30: T*="DEFINED": GOSUB 450
225 REM
230 REM POKE HY,121: CALL POSN: POKE XLO,0: CALL LINE
235 REM
240 REM ** OVERSTRIKE DEMO **
245 REM
250 REM POKE HY,121: CALL POSN: POKE XLO,0: CALL LINE
255 REM
260 REM ** UNDERLINE TITLES **
265 REM
270 REM CALL INV: VTAB 14: TAB 30: PRINT "INVERSE ": VTAB 15: TAB 30
275 REM
280 REM CALL PRINT "INVERT ": VTAB 16: TAB 30: PRINT " ":
285 REM
290 REM VTAB 17: TAB 30: GOSUB 470: CALL NONINV
295 REM
300 REM ** SHOW USER CHARACTERS **
305 REM
310 REM GOSUB 450: T*="USER": GOSUB 450: TAB 9: TAB 30: T*="DEFINED": GOSUB 450
315 REM
320 REM TAB 10: TAB 30: T*="CHARS": GOSUB 450: PRINT ":": VTAB 12: TAB 31
325 REM
330 REM ** PRINT "CHARGRAF" **
335 REM
340 REM VTAB 4: TAB 30: T*="OVERSTRIKE": GOSUB 450: VTAB 5: TAB 30: T*="MODE"
345 REM GOSUB 450: PRINT ":":
350 REM
355 REM ** PRINT "COPYRIGHT" **
360 REM
365 REM FOR I=0 TO 3: PRINT "COPYRIGHT **
370 REM NEXT I
380 REM
385 REM ** PRINT "CHAR-GRAF EDITOR" **
390 REM
395 REM ** PRINT "DO PICTURE" **
400 REM
405 REM ** PRINT "Move cursor left **
410 REM
415 REM ** PRINT "Normal mode \"":":
420 REM
425 REM ** PRINT "Mode \"":
430 REM
435 REM ** PRINT "Wait for Keystroke **
440 REM
445 REM ** PRINT "Press any Key \...\":": V\=0
450 REM IF POKE \(-16304\)<128 THEN 145: POKE \-16366,0: IF K\=1 THEN 449: FOR I=1 TO 11
455 REM CALL INVSRCR: PRINT ":": FOR J=1 TO 100: NEXT J: K=1: GOTO 445
460 REM CALL INVSRCR: FOR J=1 TO 500: NEXT J: TEXT: CALL HOME: PRM=0: END
465 REM
470 REM ** PRINT "1st Character Set **
475 REM
480 REM FOR I=0 TO 7: FOR J=0 TO 7: POKE CHARLOC,160+I*8+J
485 REM CALL CHARDRAW: NEXT J: IF I>7 THEN VTAB 1 PEEK (37)+2: TAB PEEK (56)-7: NEXT I: RETURN
490 REM
495 REM ** SETUP AND DIMS **
500 REM
505 REM
510 REM TL=016: TH=017: PO1=32: PO2=64: CHARLOC=1: CHARDRAW=2172: STRIKEOVER=2160: INVSRCR=2197

Using the Editor

After the editor is typed in and saved on tape, reload the CHAR-GRAF package and then RUN the editor. A menu of the various editor options should appear: An explanation of each option follows:

1. Edit/Create character set.
The EDIT/CREATE mode allows you to create or modify character sets by moving a cursor around an enlarged 7 x 8 dot grid. When the option is selected, the Apple is put into hires mode and a titled menu of the character set in the user area is displayed along with the edit box and a list of edit commands. To start, you must enter the code of the first character that you wish to edit. A small box will appear around that character in the map, and an enlarged version of the character will appear in the edit box. The available edit commands are as follows:

<-- Move cursor left
- -> Move cursor right
RETURN Move cursor down
I Move cursor up
D Change state of current dot
N Done, go to next character
P Done, go to previous character
C Clear grid in edit box
A Done, accept new code
R Restart edit of this character
M Done, go back to menu

When you are done with a particular character, the contents Which may be appended using the monitor's Block Move command.

All character manipulations are done to the set residing in the defined user area $1000 to $11FF (4096 to 4607). This 512-byte section of memory can contain up to 64 eight-byte characters. Character sets within the user area may be edited, copied to tape or disk or used to replace the standard set located at $900-$AFF (2304-2815). The user area may also be loaded from tape, disk or with a copy of the existing standard set.
Go ahead, count them... Kilobaud Microcomputing has more pages of articles each month than any other computer magazine. Articles that keep you in touch with the industry whether you're a rank beginner or an advanced hobbyist.

By reading the articles in Kilobaud Microcomputing you'll get to understand how computers work, how they can save you money in your business, which systems will be best for you, how the various programming languages work, what is new in both equipment and programs...and you'll learn how to write your own programs. You'll find hundreds of dollars of computer programs listed in the magazine...programs you can use for business and entertainment...or education.

Subscribe to Kilobaud Microcomputing today... with more articles (and better articles) than any other microcomputing journal, page for page you get more for your money.

OK—Sign me up for the industry’s #1 value...

- New Subscriber
- Renewal
- 1 yr./$25.00
- 2 yrs./$38.00
- 3 yrs./$53.00
- Payment enclosed
- Bill: Me
- Master Charge
- Visa
- Amerex

Card#_________________________ Expire Date_________________________
Signature_________________________. Interbank #_________________________
Name_____________________________.
Address_____________________________.
City_________________________ State______ Zip_________________________

Canadian—$27.00 for 1 year only in US funds. Foreign—$35.00 1 year only in US funds. Please allow 6–8 weeks for delivery

• PO Box 997 • Farmingdale NY 11737
of the edit box are transferred back into the character set if the character has been altered. If you change your mind about an edit, press R before exiting the character. This restores the original character and nullifies any changes that you may have made. When you are through, press M to return to the editor menu.

2. Load character set. Character sets may be loaded from tape or disk. When loading from disk, the editor will automatically do a disk CATALOG and then ask for the filename. Make sure that the file you select is a character set; otherwise, the program may be destroyed. After the filename is supplied, the program will ask if you wish to load into the user area or replace the standard set. Reply by pressing S or U. Loading from tape loads into the user area only.

3. Save character set. The set in the user area may be saved to tape or disk. If the disk option is selected, the program will ask for a filename before saving to disk.

4. Create CHAR-GRAF package. This option creates a package tape that may be used with one of your programs. The package includes CHAR-GRAF, the standard set, the Apple hi-res routines and, optionally, the user set.

5. Display hi-res character sets. Draws the character set map and alternately displays the standard set and the user set when a key is pressed. Pressing RETURN will set you back to the menu.

7. Std set → user set. These two options copy one set to the other. Note that this is a copy, not a swap! After using either option, you will have the same character set in both places.
8. Exit program. This unlinks CHAR-GRAF and ends the program. The package of routines and character sets is not affected, and LOMEM is left set at 4608. The program may be restarted again with the same sets.

General Comments

In Apple Computer’s User Contributed Software, vols. 3 & 5, there is a character generator program that uses a 128-character set and an Applesoft II demo program to go with it. Coincidentally, the character format is exactly the one I used. This means that you can use the Character Set Editor with that program also.

Some manipulation of partial sets will be required to use the 128-character sets, but it’s not difficult. Also, that set is easy to divide into two parts to use with CHAR-GRAF.

The Character Set Editor occupies approximately 7.5K bytes and requires at least 36K of memory if used with a disk system or 24K in a tape-based system. Removing all of the REM statements from the program will reduce it to about 5.6K. It could be reduced further by combining short lines and shortening the printed messages.

Possible Uses for CHAR-GRAF

In addition to the obvious uses titling plots and graphs, there are many other possibilities. A friend of mine has used CHAR-GRAF to create an I.Q. Test program that uses shape and figure analogies drawn on the hi-res screen along with the text. You could use CHAR-GRAF to create chessmen out of four or nine characters each and PRINT them onto a chessboard using the exclusive-OR mode described earlier. White pieces could be PRINTed normally, and black pieces could be in inverse-video mode.

A set of playing card characters could be created to add realism to card games such as poker or blackjack (see Bill Depew’s Apple 21, from Softape, Inc., using the Screen Machine). For hi-res graphics games you could design ships, planes, tanks or the fighters in various rotations. These could be placed on the screen with PRINT statements (and erased with another print if the exclusive-OR mode is used). Programs for the PET computer could be directly converted to the Apple by creating a “PET SET.”

Other Alternatives

In recent months, several alternative methods of hi-res character generation have emerged from various Apple after-market suppliers: the Screen Machine ($19.95), Softape, Inc.; the Superchip (ROM) ($94.95) and Editor ($19.95), Eclectic Enterprises, Inc.; and the ROMPLUS + (board) ($169), Mountain Hardware, Inc.

For those of you who just want lowercase, there are several lowercase adapters that retail in the $50 range in local computer stores.

---EDIT CMDs---

Fig. 4. Editor program edit-mode display. When character is edited, an enlarged version appears within the edit box. Dots in the character are indicated, appropriately, by little apples.
Listing 6. Character Set Editor program, which allows you to create and edit your own character sets with the Apple doing most of the work for you. It requires a 24K system (or 36K, if you have a disk).

```
10 REM ***********************
20 REM * COPYRIGHT 1979
30 REM * R B Moore
40 REM *
50 REM ***********************
60 REM * ALL COMMERCIAL RIGHTS
70 REM * RESERVED
80 REM *
90 REM ***********************
100 REM INIT LOMEMS/VALENCIA880 MENU
110 GOSUB 1920: GOSUB 1660: GOTO 1790
120 REM
130 REM PEEK EDIT GRID TO CHAR SET
140 REM
150 IF FLK=0 THEN RETURN
160 FOR I=0 TO 7: K=0: FOR J=6 TO 0 STEP -1: VLET=A+2: HL=A+3: GOSUB 220: NEXT J: POKE 4096+1+CCHAR*8: KX=I: NEXT I: RETURN
170 POKE Th.16: GOSUB 750: POKE Th.9: RETURN
180 REM
190 REM
200 REM PICKUP FROM SCREEN
210 REM
220 VTAB VL=CHAR= PEK (40)+ PEK (41)+256+HL-1: RETURN
230 REM
240 REM CURRENT CHAR TO EDIT GRID
250 REM
260 CALL LING: GOSUB 620: POKE CHARLOC.223: FOR I=1 TO 7
270 J=PEEK (4096+1+CCHAR*8): L=64
280 IF J=127 THEN:
290 FOR K=6 TO 0 STEP -1: IF X=I THEN 310: NEXT K: RETURN
300 J=-J: VTAB (1:2): TAB (30+K): CALL CHADRAW
310 L=I:2: NEXT K: RETURN
320 REM
330 REM PSEUDO-CURSOR AND KEY INPUT
340 REM CALL WITH VL=0:23: HL=(0-59)
350 REM RETURNS KEYSTROKE IN "KEY"
360 REM
370 CALL FLASH=0: GOSUB 220: POKE CHARLOC:CHAR=0
380 X=I=(I+1) MOD 6: IF I=0 THEN FLASH=I:FLASH=FO.56+192:FLASH: VTAB VL: TAB HL:CALL CHADRAW
400 REM
410 REM *** SETUP CHAR SET MAP ***
420 REM
430 REM INIT: PRINT: HCOL.255: FOR I=1 TO 8: POKE XLO.3: POKE XHI.0: POKE HY.(3;=I): CALL POSN
450 FOR I=1 TO 8: POKE XLO.(2+I*1): POKE HY.3: CALL POSN: POKE HY.131: CALL LINE: NEXT I
460 POKE XLO.171: POKE HY.3: CALL POSN: POKE HY.157: CALL LINE
480 REM
490 REM LINK TO CHADRAW AND FALL IN
500 REM CHART TITLES...
510 REM
540 REM
550 REM *** DRAW EDIT BOX ***
560 REM
570 POKE HY.3: POKE XLO.196: POKE XHI.0: CALL POSN: POKE XLO.1: POKE XHI.1: CALL LINE: POKE HY.77: CALL LINE
600 POKE XLO.199: CALL LINE: POKE HY.5: CALL LINE: RETURN
610 REM
620 REM *** FILL IN EDIT BOX ***
630 REM
640 FOR I=2 TO 9: VTB (1: TAB (30): PRINT "": NEXT I: VTB 24 RETURN
650 REM
660 REM SHOW OR DROP EDIT CHAR
670 REM
680 POKE HCOL.255:FLG: POKE XHI.0=I:(CCHAR MOD 8+1)*14-9
690 JM=POKE XLO.1:16+11: POKE XLO.1: POKE XHI.3: CALL PLOT
700 POKE XLO.1:10: CALL LINE: POKE HY.12: CALL LINE: POKE XLO.1: CALL LINE: POKE HY.7: CALL LINE
710 REM
720 REM
730 REM *** FILL IN CHARACTER CHART
740 REM
750 FOR I=0 TO 63: TAB (1 MOD (8)*4+1): TAB (1/8+2): 760 POKE CHARLOC.160=I: CALL CHADRAW
770 NEXT I: VTB 21: TAB 1: RETURN
780 REM
790 REM ** PICKUP KEY STROKE **
800 REM
810 KEY=PEEK (-16384): IF KEY<>128 THEN 810: POKE -16384:0: RETURN
820 REM
830 REM ***DISPLAY HIER CHAR SETS
840 REM
```

Computers & Gambling Magazine

PRESENTS:
PROBABILITY HANDICAPPING DEVICE I

A 16K BASIC PROGRAM FOR:
HORSE RACE HANDICAPPING!

This amazing program was written by a professional software consultant to THW Space Systems and is being introduced by the publishers of Computers and Gambling Magazine. "PHD-1" is a large complex basic program requiring a full 16k. It is carefully human-tailored for easy use. PHD-1 is a comprehensive horse racing program for spotting overlays in thoroughbred sprint races (less than 1 mile). You simply sit down with your computer and the Racing Form before the race and answer 5 or 6 questions about each horse's past performance. Your computer then accurately predicts the win probability and odds-line for each horse allowing you to spot overlaid horses when at the track. The user manual contains a complete explanation of overlay better.

Statistics for thousands of horses were used to develop this handicapping system. The appendix of the manual contains a detailed tab run of a 100 consecutive race system workout showing an amazing 45% positive return ($45 for each $100 wagered). A graph is also included showing PHD-1's close fit to the ideal predicted probability vs. actual win percentage curve. This program features: Win probability and odds for each horse. Verification display of each horse's parameters prior to entry for easy error correction. Bubble-sort routine for final display. Facility for line printer output. Cassette ARCHIVE routine to store PHD-1's output for later analysis. Complete user manual.

The user's manual may be ordered separately for your purview for $7.95 and will be credited if you purchase PHD-1.

PHD-1 User's Manual and 16K Cassette for:
Apple II, Apple IIe, Challenge (Special Type)

TRS-80 Level II, Pet

$29.95

Make checks payable to Ca res. add 5%

247 SFO COMPUTER

27213 Ventura Blvd., Suite F, Woodland Hills, CA 91364

BE A WINNER Get on the Computers and Gambling Products Magazine mailing list for $3.00 and receive available back issues.

TRS-80 is a registered trademark of Tandy Corporation.
<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-1056</td>
<td>16K Level II System with Keypad</td>
<td>$700.00</td>
</tr>
<tr>
<td>26-1145</td>
<td>RS-232 Board</td>
<td>$84.00</td>
</tr>
<tr>
<td>26-1140</td>
<td>"O" K Interface</td>
<td>$254.00</td>
</tr>
<tr>
<td>26-1141</td>
<td>"16" K Interface</td>
<td>$381.00</td>
</tr>
<tr>
<td>26-1142</td>
<td>"32" K Interface</td>
<td>$506.00</td>
</tr>
<tr>
<td>26-1160</td>
<td>Mini Disk - Drive 0</td>
<td>$424.00</td>
</tr>
<tr>
<td>26-1161</td>
<td>Mini Disk - Additional</td>
<td>$424.00</td>
</tr>
<tr>
<td>26-1154</td>
<td>Lineprinter II</td>
<td>$720.00</td>
</tr>
<tr>
<td>26-1156</td>
<td>Lineprinter III</td>
<td>$1799.00</td>
</tr>
<tr>
<td>26-1157</td>
<td>WP50 Daisy Printer</td>
<td>$2670.00</td>
</tr>
<tr>
<td>26-1180</td>
<td>Voice Synthesiser</td>
<td>$339.00</td>
</tr>
<tr>
<td>26-1181</td>
<td>VOXBOX</td>
<td>$145.00</td>
</tr>
<tr>
<td>26-1104</td>
<td>Factory Upper/Lower Case Modification Installed</td>
<td>$90.00</td>
</tr>
<tr>
<td>26-1605</td>
<td>Scripsit - Tape</td>
<td>$60.00</td>
</tr>
<tr>
<td>26-1563</td>
<td>Scripsit - Disk</td>
<td>$85.00</td>
</tr>
<tr>
<td>26-1054</td>
<td>4K Level II</td>
<td>$527.00</td>
</tr>
</tbody>
</table>

CENTRONICS

- Fast 100 CPS Centronics
- 730 Printer - $675.00
- Text Quality Centronics
- 737 Printer - $850.00

MICROSOFT

- Model I Basic Compiler - $195.00
- Model II Basic Compiler - $395.00

BASF

- 10-5¼ Diskettes - $45.00
- 10-8 Diskettes - $47.00

Acorn Software Products, Inc.

- GAMES:
 - Alien Invasion - $9.00
- UTILITIES:
 - System Savers - $14.00
- EDUCATION:
 - Language Teacher - $18.00

A L L O T H E R R.S. SOFTWARE

- Furniture, Stands, Cables and Accessories Deduct 10% From Catalog Price

Novation Cat Modem - $159.00

CCA Data Management System - $72.00

Adventures

- Games 1-9 - $14.00

INTERNATIONAL

- Plug Compatible Lobo 5½ Drives - $375.00
- Versatile Lobo Interface, 8" Drives and Hard Drive. Call For Prices

IN T E R N A T I O N A L

DOWNTOWN PLAZA SHOPPING CENTER

115 C SECOND AVE. S.W. CAIRO, GEORGIA 31728 (912) 377-7120 Ga. Phone No.

Micro Management Systems, Inc.

- No Taxes on Out Of State Shipments
- Immediate Shipment From Stock.
- Full Factory Warranty on All Items Sold.
- Largest Inventory In the S.E. U.S.A.

1-800-841-0860 Toll Free Order Entry

TRS-80 is a registered trademark of the Tandy Corp.
Thoughts on the SWTP Computer System

Don't be a scrooge; catch the true spirit of this series with the HUMBUG monitor.

Peter A. Stark
PO Box 209
Mt. Kisco, NY 10549

This month, we continue the ROM monitor discussion we started last month. The first ROM monitor in SWTP systems was MIKBUG. Most software was designed to work with it, and so succeeding monitors have had to copy many of MIKBUG's routines and addresses.

The important MIKBUG entry points, which should be preserved in "compatible" monitors are:

BADDR E047—Input four hex digits into index register
BYTE E055—Input two hex digits into A accumulator
OUTHl E067—Output left BCD digit in A accumulator
OUTHr E06B—Output right BCD digit in A accumulator
OUTCH E075—Points to OUTEEE
INCH E078—Points to INEEE
PDATA1 E07E—Print a text string pointed to by index reg.
INHE X0A4A—Input a hex digit into A accumulator
OUTH2 E08F—Output two hex digits pointed to by index reg.
OUTH4S E0C8—Output four hex digits pointed to by index reg., followed by a space
OUTH2S E0CA—Output two hex digits pointed to by index reg., followed by a space
OUTS E0C9—Print a space
START E0DE—Start MIKBUG
CTRL E0E3—Restart MIKBUG
INEEE E1AC—Input a 7-bit character from keyboard
OUTEEE E1D1—Output a character to terminal

These sixteen entry points are the major ones. In addition, there are about 20 more minor ones that you can include if you just copy most of MIKBUG, but which are probably otherwise not needed.

The one exception is the SWTP BILOAD program, which is used to speed up loading of binary tapes such as BASIC. This program uses these additional MIKBUG entry points:

DMPREG E115—Print out CPU registers
LOAD19 E040—Part of load routine
SAV E1A5
DE E1F3
DEL E1EF
IOUT2 E1E3

This loader does not work with an MPS interface, so I chose not to include these entry points. However, I did include an entry point called INCH6 at E1F6, which is similar to INEEE except that it enters an 8-bit ASCII character rather than stripping off the parity bit to make it into seven bits, as INEEE does.

MIKBUG also uses the 128-byte scratchpad RAM starting at location A000. There are some differences, however, between MIKBUG and SWTPBUG in address assignments in this area, and I chose to go with SWTPBUG here rather than with MIKBUG. The important addresses are as follows:

NMI A006—NMI interrupt vector
SP A02B—User stack pointer
PORADD A02A—Address of the control port in use
PORECH A02C—Terminal echo on/off flag
XHI A02D—High-order half of index register
XLOW A02E—Low-order half of index register

MIKBUG had an XHI and XLOW one location lower, and some other monitors (as well as some software) go along with this convention.

I also treated the stack differently. MIKBUG and SWTPBUG always initialize the stack when they are started up at A042 and down. The G command then loads the next seven bytes into CPU registers and jumps to a user program with the stack pointer pointing to A049. So, in a way, we can think of the area below A042 as being a monitor stack, while the area just below A049 is a user stack.

But SWTPBUG's J command doesn't change the stack pointer when going to a user program; it leaves it pointing to the monitor area. Likewise, when a breakpoint is encountered, it leaves the stack pointer unchanged when it executes its own routines. This results in some weird occurrences when the monitor and user stacks wipe each other out. It becomes even more interesting when you consider that some user software initializes the stack elsewhere... such as at A042.

Because of this, I put other HUMBUG storage locations in a separate RAM—far away from the MIKBUG/SWTPBUG RAM—and treated the stacks differently. The monitor stack is now always at D07F. A jump command always goes to a user program with the stack pointer at D07D (with a return address at A07E/F, so jumping to a subroutine will result in a return back to the monitor), and a GO command always goes to the user program with the stack pointer at A049.

This keeps monitor and user stacks completely separate so they never clobber each other. It does require a separate RAM, however, at locations D000-D07F for strictly monitor use. In return, it keeps HUMBUG storage strictly compatible with any stack or storage assignment made by other programs, so there is never a problem.

In my system, the storage at D000 is provided by the 4K board I mentioned earlier. In two other systems that are currently running under HUMBUG, the memory is provided by the CPU board's 6810, relocated to CO00-DFFF as also mentioned last month.

I/O Control from the Keyboard

HUMBUG's control terminal is a serial terminal using an MPS card at port 1, which provides all input to the monitor,
and also standard output. Location PORECH (A00A) contains $8004, which points to this port. By changing this number, you can redirect the control port to an MPS card at any other port. (I'm describing the common version of HUMBUG; my own has its I/O at $8004.)

In addition, HUMBUG can provide an output to a second MP-S at port 0, to a user-written output routine in another EPROM or (in the 3K 2708 version) to the Percom video board.

Any time the monitor is looking for commands or any time that INEEE or OUTEEE is called, HUMBUG checks this port for a control-S break character arriving from the keyboard. When a control-S is detected, HUMBUG echoes with a bell (control-G) and halts all current I/O.

When I/O is halted, HUMBUG waits for one more character, which is used for controlling monitor ports. If it is received by INEEE, then it is not returned back to whatever program called INEEE. This provides control of output ports without upsetting other programs. This control character can be one of the following: CR—cancels the current program and usually does a return to the monitor. But the return is handled through a pointer in RAM, so that other programs could change the pointer and force a return to themselves. 0—turns port 0 on and off. 1—does the same for port 1. D—does the same for a user-written port routine. P—turns the pause feature on and off. When the pause feature is on, output will stop every 16 lines to allow it to be read when using CRT terminals. Any other character is ignored. The 0, 1 and D characters toggle their corresponding ports; if a port is on then it goes off, if it is off then it goes on. Since these characters are not echoed or even returned to calling programs, ports can be turned on and off in the middle of input or output.

The video board output normally runs all the time and is not controlled. (There is a flag in monitor RAM, however, that disables it if I want to use it for graphics or memory-mapped output.)

When another port is on, then the video output simply runs at the speed of the slowest port. But when all other ports are turned off, then the video board runs at breakneck speed, limited only by CPU speed.

This feature is extremely versatile. Not only does it allow precise printer control, but it also permits rapid skipping ahead at video speed. (The 2K 2716 version, which does not support the video board, will skip ahead even faster when you turn off all output.) Moreover, the control-S/CR combination allows you to abort jammed programs without reaching for the RESET button.

Extended Debugging Facilities

My third requirement for improved debugging power was met in several ways. First, the HD command allows a hex dump of selected memory areas. The DE command prints a "deserialized" listing of machine code, formatted by address and instruction. Thus, a DE dump of a program might go like this:

```
1000 86 41
1002 BD E1 D1
1005 4C
1006 87 11 03
```

An AO command outputs memory data in ASCII so I can scan for strings. An FM command allows filling memory with a specified byte. This is convenient to fill memory with 3F (SWI) instructions to catch programs that go wild. The FI command allows searching memory to find one, two or three bytes. The MO command moves memory contents from one place to another, even if the new area overlaps the old area.

But the most important function is the breakpoint and single-step facility. Up to four breakpoints can be set in programs, and whenever a program encounters such a breakpoint (or any SWI instruction anywhere), an interrupt returns control to HUMBUG, which then prints out the register contents.

New Programs from LEVEL IV PRODUCTS, INC.

<table>
<thead>
<tr>
<th>Program</th>
<th>Price/Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invaders Plus with Stereo Sound by L. Ashmun</td>
<td>$24.95 on Disk</td>
</tr>
<tr>
<td>Invaders Plus-Mono Sound</td>
<td>$19.95 on Cassette</td>
</tr>
<tr>
<td>Match Book Football with Sound</td>
<td>$9.95 C</td>
</tr>
<tr>
<td>Boss (see 80 Micro for details) by V.B. Hester</td>
<td>$29.95 C</td>
</tr>
<tr>
<td>Purge by Breeze Computing</td>
<td>$29.95 D</td>
</tr>
<tr>
<td>Format by Breeze Computing</td>
<td>$14.95 D</td>
</tr>
<tr>
<td>Adventure #9 from Scott Adams</td>
<td>$14.95 D</td>
</tr>
<tr>
<td>Mystery Mansion Adventure by G. Hasset</td>
<td>$12.95 C</td>
</tr>
<tr>
<td>Atlantis Adventure by G. Hasset</td>
<td>$12.95 C</td>
</tr>
<tr>
<td>NEWDOS 80 by Apparat Inc</td>
<td>$149.95 D</td>
</tr>
<tr>
<td>Lost Dutchman's Gold & Spider Mountain Adventure both only</td>
<td>$19.95 C</td>
</tr>
<tr>
<td>New Low Price on Okidata Ulrine 80 Printer</td>
<td>$699.00</td>
</tr>
<tr>
<td>Reset Extender</td>
<td>$3.99</td>
</tr>
<tr>
<td>MPI Disk Drive (drive only)</td>
<td>$245.00</td>
</tr>
<tr>
<td>Hard Shell Cases 5</td>
<td>special ea. $2.50</td>
</tr>
<tr>
<td>8 inch Diskettes for the MOD II</td>
<td>box of 10 $29.95</td>
</tr>
</tbody>
</table>

C = Cassette D = Disk

Write for more information on any program listed above. All Hardware Level IV Products carry can be repaired in our full service repair department. We repair modified MOD-1 computers. Call for more details.

From Level IV Products Inc.

32238 Schoolcraft Suite F4 • Livonia, Michigan 48154
1-800-521-3305 outside Mich • 1-313-525-6200 inside Mich

10% discount on prepaid software orders. Please add $2.00 for shipping and handling. For C.O.D. please add another $1.25. All hardware shipped freight collect.
and stops. HUMBUG keeps track of breakpoint locations and the instructions existing in those locations and prints a listing of them whenever the BP (breakpoint print) command is given. This reminds you where you have put the breaks. An important feature is that HUMBUG doesn’t forget about them either when a jump back to the monitor is done, or when RESET is pressed.

SS is used for single-stepping through programs. Each time you type SS, HUMBUG prints out the address and code of the next instruction, executes it and then prints out the contents of all registers after the instruction is completed. It will single-step all instructions except WAII, SWI and RTI, and cannot single-step into or through ROM. HUMBUG prints out NO! whenever any of these are attempted.

FCROM

FCROM occupies addresses FC00–FFFF. It contains the reset and interrupt vectors that the 6800 CPU needs at locations FFF8–FFFF. So, without this ROM, the system cannot function at all.

FCROM contains all of the common MIKBUG I/O routines. But since this ROM is at the end of memory, none of these routines are at MIKBUG-compatible addresses. Instead, they are simply consecutively placed wherever they fit. To allow future changes, though, they are vectored through a jump table that starts at FC00:

- FC00 JMP COLDST
- FC03 JMP WARMST
- FC06 JMP HOTST
- FC09 JMP INEE
- FC0C JMP OUTEEEE etc.

Even when FCROM is changed in the future, these pointers will stay in the same place, and so external jumps into FCROM will stay unchanged.

OUTEEEE and INEEEE provide all of the port control features mentioned before. In addition, FCROM has a command processor that accepts monitor commands from the keyboard and processes them. But it only recognizes two commands—ME for memory examine and change and JU to jump to a user program. These are the absolute minimum that the monitor could have and still work.

Monitor Extendability

My fourth major requirement was to allow the monitor to be changed or expanded without too much work. As it now stands, I can add EPROMs without changing the existing ones. Moreover, I can even unplug some of the existing EPROMs from the system, and the rest of the monitor will still work! (Since the 2716 version consists of just one EPROM, this obviously doesn’t apply to it.)

The 2708 version of HUMBUG consists of three 1K EPROMs: FCROM, E0ROM and E4ROM. FCROM is completely self-contained and will run all by itself, even when the other EPROMs are unplugged. It contains all port control and video board control and, with the ME and JU commands, can load and execute other programs.

But it is obviously limited; it relies on the other EPROMs in the system. It also doesn’t have MIKBUG-compatible entry points, although it does have all the required routines.

This is where the extendability feature comes in. Notice in the above table that there is an entry point at FC00:

FC00 JMP COLDST

This is the main entry point when you first turn the system on or when you push RESET. This is a “cold-start,” which initializes ports 0 and 1 and initializes the video board.

Once this is done, the FCROM program checks to see whether there is a ROM starting at address E000. If there isn’t, then it proceeds with a “warm-start” initialization, where the program turns on port 1, turns off other ports and sets more registers. But if it detects that there is a ROM at E000, it executes a JSR to that ROM before doing the warm-start. This gives E0ROM a chance to execute a cold-start too.

When E0ROM is finished with
its cold-start, it checks for the presence of a ROM at either E400 or E800; if it detects one, it jumps there. Each EPROM gets its chance at a cold-start initialization. If E4ROM is installed at E400, it gets control; if not, then control either goes to the next ROM (if any) or returns to FCROM. Initialization is divided into cold-start and warm-start and each of these transfers control from ROM to ROM.

When all initialization is completed, FCROM takes over and looks for a command. If an ME or JU command is entered, then FCROM executes a memory change or jump itself. Otherwise, it puts the two command characters into accumulators A and B and transfers control to other ROMs, in turn. If one of these recognizes a valid command, it executes it; otherwise, control goes to the next ROM. Ultimately, control passes back to FCROM.

Passing control back and forth between ROMs allows more ROMs to be added at any time. Moreover, if one ROM is unplugged, the remaining ROMs still get control and can still execute their own commands. In this way, you can expand or modify HUMBUG without rebooting any three EPROMs. But there is a price to be paid; an additional amount of housekeeping in each EPROM, which takes up about 40 bytes.

EOROM

EOROM, the second 2708, is at locations E000-E3FF. Although the system will run with just FCROM, EOROM is essential for MIKBUG compatibility because the EOROM has sixteen MIKBUG-compatible jump vectors that point to the corresponding locations of FCROM. For instance, location E1AC of EOROM contains an instruction that says JMP to $FC09, which is the actual entry point for INEEE in FCROM. Each MIKBUG entry point has such a JMP.

This is a different approach from SWTBUG and other monitors, which simply put these routines at the same addresses as MIKBUG did and then try to fit everything in. Here all the routines are elsewhere, and only JMP instructions exist.

Woven in between these JMPs are the cold- and warm-start routines, the command processor that recognizes monitor commands and routines for the following commands:

- L — Load MIKBUG-formatted tape
- P — Punch/Save MIKBUG-formatted tape
- E — End of tape
- F — Format disk
- D — Debug disk
- S — Single-step
- A — ASCII input into memory
- O — ASCII output from memory
- M — Move memory contents

The exact functions of these will become clear when we examine the actual programs.

Since the system is set up to allow more ROMs to be easily added, there are obviously others available. EBRom, for instance, adds commands to compare memory contents, change terminal baud rate from the keyboard and change control ports. But these are just frosting on the cake, not really needed for most systems.

Let's examine some of the actual HUMBUG code.

Initialization and Reset

A 6800 requires four address vectors to be located in the top eight memory locations, FFF8 through FFFF, which are used for vector resets and interrupts. These four vectors are: FFF8 and FFFF — IRQ vector
FFFA and FFFB — SWI vector
FFFF and FFFD — NMI vector
FFE8 and FFFE — Reset vector

When you press the reset button or when an interrupt occurs, the 6800 pulls the appropriate address out of one of these four locations and puts it in the program counter. This causes a jump to that address. For that reason, when the system is first turned on, at least the reset vector and the routine it points to must already be in memory. This is why every 6800 system has its ROM located at the very top of memory.

Listing 1 shows the portion of HUMBUG’s FCROM that contains the very top of memory. FFF8 through FFFF contain these four vectors: IRQ points to FFF8, SWI points to FFED, NMI points to FFF2 and reset points to FC00. Thus, when a reset is completed, the 6800 starts executing from location FC00, which is the beginning of FCROM.

The interrupt vectors all point to locations in ROM, shown just above that. When an interrupt occurs, the computer goes to the appropriate routine, loads a number from RAM into the index register and then does an in-
Basic Software

Put your computer to work doing something useful. Now two books, Practical Basic Programs and Some Common Basic Programs, offer a total of 116 practical, useful programs.

The programs cover a variety of practical applications: finance, management decision, statistics, mathematics and science. Each book contains complete program listings in a general version of Basic that will work on most popular computers. You can use any of the programs even if you don't know how to program — just copy it from the book into your computer and go!

Documentation. Always a must, Osborne offers complete documentation with each program. It includes discussion of what each program does, how it works, and how to use it. An example of each program in action shows you exactly how the program will look when you use it.

SOME COMMON BASIC PROGRAMS. Now in its third printing, more than 50,000 readers have found useful programs here. It contains 76 programs, including Linear Programming, Tax Depreciation Schedule, Linear Interpolation and Coordinate Plot.

Commodore PET and CBM users. You can purchase a special edition of this book, just for use with the Commodore computers. All 76 programs have been modified to run optimally on the PET and CBM, so you won't have to waste a minute adapting them yourself. Be sure to order Some Common Basic Programs - PET/CBM Edition.

To go with the PET/CBM edition, you can also purchase the programs ready-to-run on cassette or diskette.

Radio Shack TRS-80 users. You too can purchase all 76 programs adapted specifically to your computer with our TRS-80 cassette. Use the standard edition of Some Common Basic Programs for documentation.

PRACTICAL BASIC PROGRAMS. Just published, this collection of 40 programs covers slightly more sophisticated applications than Some Common Basic Programs. There are extra practice problems, with answers, to help you fully understand what these programs can do. Program titles include Income Averaging, Lease/Buy Decision, Syndicated Investment Analysis, Home Budgeting, Critical Path Method, Nonlinear Breakeven Analysis, Statistical Estimation Theory, and Lagrangian Interpolation.

Osborne/McGraw means documented software

Some Common Basic Programs (book)	06-3	$12.50	Some Common Basic Programs - PET/CBM diskette	33-0	$22.50
Some Common Basic Programs - PET/CBM ed. (book)	40-3	$12.50	Some Common Basic Programs - TRS-80 diskette	32-2	$15.00
Some Common Basic Programs - PET/CBM cassette	25-X	$15.00	Practical Basic Programs (book)	38-1	$15.00

To order, return coupon with check or money order. Include 75¢ per item for 4th class mail, $1.25 per book UPS, or $2.50 per book air mail in the U.S.

California residents also include local sales tax. To place an order by phone call 415/548-2805.

A Osborne/McGraw-Hill
630 Bancroft Way Dept. K5
Berkeley, CA 94710

[Form for ordering and pricing information]
dexed jump to the address given in the index register. This address is actually specified through RAM and can therefore be changed by user programs, even though the JMP instructions themselves are in ROM. The three addresses used are exactly compatible with SWTBUG:

IRO is A000
SWI is A012
NMI is A006

FCROM Jump Table
FCROM contains routines that are subject to future change. To avoid having to change other software, all these routines are handled through a jump table (sometimes also called a “transfer vector”) as shown in Listing 2. In particular, note that FC00 is the start location to which the computer jumps on a reset. This is called COLDV (cold-start vector), and it jumps to COLDST at FC33. Two other entry points are WARMV and HOTV, followed by vectors or

 pointers to all the MIKBUG-compatible routines.

Cold Start
Listing 3 shows what happens at a reset (or cold-start; a jump to E000, which is the MIKBUG/SWTBUG reset address, also winds up at this location).

First, the stack pointer is set to point to the monitor stack at D07F. Then, MP-S ACIAs on ports 0 and 1 are reset and then initialized, followed by a jump to the video board initialization routine. In the case of HUMBUG, this is exactly the same as Percom’s suggested video driver initialization, and so there is no need to show it here. If you have this video board, you already have a listing of it; if you don’t, then you don’t need it and can replace it with initialization for another video board or skip it.

The last four lines of cold-start check to see whether there is another ROM at address E000. Since all HUMBUG ROMs start with a jump table, we check to see whether there is a 7E or JMP instruction at address E000. If not, we continue to WARMST. If there is a JMP, we execute a JSR to E000.

Cold-Start of Other ROMs
As it turns out, EOROM doesn’t need any cold-start initialization. Unfortunately, the overhead involved with the expandability of HUMBUG requires that we go through some testing to check for a following ROM (see Listing 4). Here we see the JMP at location E000, which leads to CINIT. Since EOROM has many MIKBUG-compatible jumps, a lot of its routines have to be squeezed between these jumps. In this case, the CINIT cold-start initialization is placed right after the INEVEE vector at E1AC, which is also shown in Listing 4.

The NOP at CINIT shows where the initialization would go, if there was some. The following steps check for a JMP at the start of the next ROM at address E400 and jump to it if present. If not, then they check for a JMP at the start of a ROM at E800 and again jump to it if present. If neither is present, then there occurs an RTS, which returns back to FCROM’s warm-start procedure.

These steps check for a JMP both at address E400 and at E800, so that if an additional ROM is installed at E800, but the one at E400 is pulled out, then the system will simply skip past the removed ROM. The purpose is to allow the monitor to function at least partially, even if some of its ROMs are pulled out. The only crucial ROMs are FCROM and EOROM, although the system will work even with just FCROM.

Although EOROM doesn’t need cold-start initialization, E4ROM does. Its cold-start initialization is shown in Listing 5. Notice that E4ROM tries to differentiate between a reset or jump to the cold-start location E0D0, as opposed to a real cold-start right after the first power-on. The reason is because breakpoints have to be handled differently.

When you first turn on the power, the list of breakpoints maintained by HUMBUG has to be erased so that, if any new breakpoints are established, HUMBUG doesn’t accidentally

Listing 3. FCROM cold-start initialization.

Listing 4. E0ROM cold-start initialization.

Listing 5. E4ROM cold-start initialization.
clobber a program by restoring what it thinks is a prior breakpoint.

On the other hand, when you press the reset button or make a jump to the cold-start location $E000 (or FC00), you don’t want to erase the breakpoint table because doing so would make you lose track of locations that have been replaced by a break. So we need a way of telling the difference between the two kinds of resets.

For this reason, four locations in monitor RAM, called POWUP, and located at $D028 through $D02B, are used as a flag. When you first turn on the power, these locations will contain some random numbers. CINIT in E4ROM (Listing 5) checks the contents of these locations. If the contents are 12, 34, 12 and 34, respectively, then the program assumes that this is not a real cold-start, and so a jump is made to RESET. But at the first cold-start, these locations will be random and will therefore not contain this particular combination. (The chance of their just accidentally holding this number at power-up is about 1 in 4 billion!)

In that case, the routine at PUP will be performed. This initializes the address for an SWI to the return address BKRET which used for breaks, places the 12-34-12-34 combination in POWUP and erases the breakpoint table BKTAB. Then it goes to RESET. (Once POWUP is set to 12-34-12-34, all subsequent resets will skip this segment.)

The final part of the cold-start procedure again checks whether there are other ROMs, this time at $E000 and $CC00, and jumps to them if present. Otherwise, an RT$ brings us back to FCROM, which will continue with the warm-start initialization. Remember that FCROM went to EROM with a JSR. Each ROM then continued to the next ROM with a plain JMP, so that an RTS will bring us all the way back to the first JSR in FCROM.

Next month we’ll conclude the listing of this “Monitor to End All Monitors.”

BARE BOARDS

8088 5-CIP SYSTEM

An 8088 Family microcomputer system using 5 ICs, an 8088 CPU, an 8284 clock generator, an 8155 RAM/O/C/Timer, an 8755A EPROM and an 8186A 16 x 8 Static RAM. This system has the following:

- 16-bit internal architecture
- Up to 1280 bytes of Static RAM
- 2048 bytes of EPROM
- 32 parallel input/output lines
- 14-bit counter/timer
- Instruction set 100% compatible with the 8086

$29.95

8085 3-CIP SYSTEM

State-of-the-art system using 3 ICs, an 8085, an 8156, and either an 8305 or 8755. The system has the following:

- 3 MHz 8085 CPU
- 256 bytes static RAM
- 2048 bytes ROM
- 38 parallel input/output lines
- 2 serial input/output lines
- Instruction set 100% upward compatible with 8080A
- 14-bit counter/timer

$24.95

8202 MEMORY BOARD

This board has 32-2117 Memory Chips and 2 Controller Chips. The board has the following:

- 64K Bytes on one 5.75 x 8.00 PC Card
- Only two support chips
- 1 IC32 Dynamic RAM Controller
- 1 8282 Delayed Latch
- Only one crystal, a few resistors and bypass capacitors needed as external support

$39.95

PRODUCTS AVAILABLE FROM
JOHN BELL ENGINEERING
P.O. Box 1168
Deer Bluff, IL
Add 6% sales tax in California and 4% for VISA or M.C.

JOHN BELL ENGINEERING

Model EP-2A-79

EPROM Programmer

Software available for F-8, 6800, 8085, 8080, 8080, Z-80, 6502, 1802, 2650, 6809, 8086 based systems. EPROM type is selected by a personality module which plugs into the front of the programmer. Power requirements are 115 VAC 50/60 Hz. at 15 watts. It is supplied with a 36-inch ribbon cable for connecting to microcomputer. Requires 1½ I/O ports. Priced at $155 with one set of software. (Additional software on disk and cassette for various systems.) Personality modules are shown below.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Programs</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-0</td>
<td>TMS 2706</td>
<td>$15.00</td>
</tr>
<tr>
<td>PM-1</td>
<td>TMS 2707</td>
<td>$15.00</td>
</tr>
<tr>
<td>PM-2</td>
<td>TMS 2710</td>
<td>$30.00</td>
</tr>
<tr>
<td>PM-3</td>
<td>TMS 2710</td>
<td>$15.00</td>
</tr>
<tr>
<td>PM-4</td>
<td>TMS 2532</td>
<td>$30.00</td>
</tr>
<tr>
<td>PM-5</td>
<td>TMS 2516, 2716, 2758</td>
<td>$15.00</td>
</tr>
<tr>
<td>PM-6</td>
<td>MC68070</td>
<td>$33.00</td>
</tr>
</tbody>
</table>

Optimal Technology, Inc.
Blue Wood 127, Earlysville, Virginia 22936
Phone (804) 973-3482

Microcomputing, August 1980 125
Dial-up Directory

This Directory tells you how to live with an overactive dialing digit.

Frank J. Derfler, Jr.
PO Box 691
Herndon, VA 22070

How much is your phone bill? Most of the letters and messages I receive as a result of these articles start with "I will hate to see my phone bill, but I sure am having a good time...."

This article introduces one service that may make a difference in the size of your monthly donation to the telephone company and examines a creative bulletin board program. Finally, I will attempt to throw some light into the dark corner of TRS-80 telecommunications.

Sprint

Is your long-distance phone bill over $50 a month? Do you live in or near one of the top 50 or so cities in population? Do you usually call to large population centers? Do you have a push-button phone?

If you answered yes to all the above, you may want to "sprint" to Southern Pacific Communications (SPC) to save a few dollars. Sprint is the name of SPC's long-distance dial telephone network. It picks you up from your local telephone system, carries you across country and deposits you in the local system of many large population centers across the country. The service will carry voice or voice bandwidth data (standard 300 baud is fine).

SPC has been in business since 1970. Today, they operate more miles of intercity microwave circuitry than any other specialized common carrier. The number of specialized carriers such as SPC is growing, and they are all expanding the areas they serve. SPC projects continued growth to more areas of the country. Since 50 percent of the U.S. population lives in the 40 largest cities, SPC is able to serve most of us right now.

To use Sprint, you first dial a local number on your standard push-button instrument. This local number connects you with the Sprint network. You then dial the long-distance number you want and your Sprint authorization code. The network takes over, and you proceed as if you have made a regular voice or data call.

The cost depends upon when and how long you call. If you compare "prime time" 8 AM to 5 PM calls, Sprint saves around 30 percent. Sprint drops to low rates at 5 PM, so if you compare their calls with the regular evening rate, you will probably save more.

From Alabama, a 15-minute call to Los Angeles at 6 PM costs me $3.69 with normal telephone service. The Sprint call runs about 11 cents per minute (varies with distance), plus a ten cent termination fee, for a total of $1.75. You have to also prorate a $10 monthly subscription cost over the number of calls you make.

For example, if you add a pro rata charge of 25 cents to total $2, you have almost saved enough on that one call to buy a 21L02 static RAM for your memory board. (You could add a pro rata share of the regular telephone service and installation costs to the $3.69, but I will treat them as sunk costs.) Sprint is billed in six-second increments. The standard telephone service rounds up in all cases.

Since most of us use our dial-up communications at night and during the weekend, let's consider the cost of a 6 AM call. On the regular phone system, it would cost $2.30, so you would only save a quarter or so with Sprint. The saving is less, but it is also less convenient.

Sprint is not for everyone. It doesn't serve the Northwest or Northcentral states. There is a minimum $25 a month charge, so you have to make quite a few calls. You have to analyze your own situation and determine if the network has a local connection point near you before you decide. If you are interested, contact: SP Communications, PO Box 974, Burlingame, CA 94010, (415) 692-5600.

System Spotlight

Anyone interested in the finer points of bulletin-board or message services should dial into the system in Endicott, New York, (607) 754-5571. Bob Iannucci has put together this service with an eye toward both economy and individual attention. The entire program runs on one single-sided single-density, small, North Star floppy disk. The program is in 8080 assembly language, so there is no overhead for CP/M or BASIC. The files are self-maintaining, and no intermediate or other records are needed.

This flexible system assumes you know what you are doing until you prove you don't. The prompt commands are short to save time for the experienced, but if you need help, detailed explanations are available at every level.
Bob's system asks new users to provide a four-letter password and a user ID. The password is used to kill or edit your old messages. Other people use the ID to send you messages, which you can quickly recall with a special summary command.

The ID prevents users from being inconsistent with the names they use to sign on and send messages. Other systems have a similar user name feature, but if I sign on as John Doe and the message is sent to Mr. Doe, I will not see the message on a sort by name.

Bob must provide an ID to user name cross-reference, and use of this file takes time, so it still isn't a perfect solution. However, regular correspondents will quickly learn each other's IDs.

The user ID also provides semipermanent personalization of the system. The first time you sign on, you must tell the system the number of nulls you need, if you have a bell, what your keyboard delete code is, if you can use lowercase and if you want an echo. The system remembers these factors when you use your ID in the future. This is a timesaver.

This system, like several others, now allows "stacking" of commands. If you know what questions are coming, you can answer them in advance by separating the answers with semicolons. Without the stacking feature, the sequence appears as:

```
IS THIS YOUR FIRST TIME ON THIS SYSTEM?
```

```
NO
```

```
WHAT IS YOUR NAME? john doe
```

You could sign on as follows:

```
IS THIS YOUR FIRST TIME ON THIS SYSTEM?
```

```
no
```

```
WHAT IS YOUR NAME? john doe
```

Stacking is an obvious timesaver if you are familiar with the system. Always check the help (H or ?) command for information on how to make bulletin board systems really work for you. Bob is not in the business of selling software and his program is machine specific, but the ideas and style he has used can be copied by all.

TRS-80

The world of TRS-80 communications has been a cloudy one. National advertising of non-Radio Shack products for communications is limited, and model numbers and types of software have been a subject of some confusion. I have been waiting to get some solid information before making any comments in this series about TRS-80 systems. Now I can discuss one software package that provides good communications capability for the TRS-80. But first, I'll examine the hardware.

If you are going to communicate using a TRS-80, you need the expansion interface, the RS-232 card and a modem. Some RS-232 hardware that does not use the expansion interface is being advertised (see "TRS-80 Serial I/O for Less" in the April 1980 Microcomputing, p. 100). If you want to use a smart terminal program with one of these boards, you'd better be able to write your own software. (Note: that is not true of the "Micro-connection" recently announced for the TRS-80, which we will review soon.)

The Radio Shack RS-232 cards apparently got off to a rough start because of some bad quality control, and they still give problems in physical connection. If you have memory errors, system reboots, random error messages and other seemingly unrelated problems, check the connection between the RS-232 card and the expansion interface.

Any of the RS-232-type 103 modems will work with the TRS-80. The Novation CAT modem, sold under the Radio Shack label, does a fine job. Dial systems are not necessary, but they are helpful. The Term program sold by Radio Shack is a dumb terminal program that will run without a disk. Other software has more capabilities.

The Bottom Shelf, Inc., in Atlanta has been strong in the TRS-80 software market with a Terminal Control Program (TCP) written by Barry Mulligan that is clever in concept because it is both a standalone package and a utility or subroutine to be called as a part of larger programs. The package allows communication with any other computer or terminal and the transfer of programs, data and memory blocks.

All of the RS-232 parameters (word length, etc.) are controlled from the keyboard. Versions for 16K, 32K and 48K are provided, and the package will work from tape or disk. Saving data is done by the standard tape or disk operating system.

Several levels of operation can be selected. Dumb terminal operation is available, but features such as control codes, error checking and a bell (audio tone) are provided for the dumb terminal. The TCP manual calls this KSR—after the keyboard send designation often used with printing terminals on communications circuits.

The TCP software also allows you to transmit and receive BASIC programs. The compressed format used internally by the TRS-80 is transmitted under some options. This saves long-distance phone-call time, but you must have another TRS-80 at the other end in this mode.

A clever option allows the TCP software to interact with running programs. A program can run for a while, call TCP, exchange data over a modem, terminate TCP and continue running. A BASIC program is included to read ASCII files (such as Electric Pencil), call TCP and transmit or receive messages. This capability is similar to the ASCII Express program for the Apple II.

The manual that Barry has written is aimed at the practical user. Each option is explained in detail, and good step-by-step instructions are provided. This program is easy to use and well documented. It should serve the needs of both expert and novice keyboard pounders. The program costs about $20.

Do you market products for microcomputer communications? Do you operate a message system? Let me know what you are up to. Problems? Ask me. Send paper mail to PO Box 691, Herndon, VA 22070 (include a stamped envelope if you want a reply). Save a tree and send electronic mail via the Remote Northstar (404) 939-1520, or to TCB967 on The Source.

Table: A list of part-time operations run by individuals and computer stores and full-time systems run by commercial companies for communications with their users. These phone numbers were confirmed from my list of 180 reported listings; I have been on each one of these systems.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PHONE NO.</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>415-527-0400</td>
<td>Proxima. The official message system of North Star Computer Company.</td>
</tr>
<tr>
<td>Brentwood</td>
<td>408-296-5799</td>
<td>CBBS-type software running on a PDP-8 minicomputer with a hard disk.</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>319-557-9618</td>
<td>ABBBS.</td>
</tr>
<tr>
<td>Kentucky</td>
<td>502-245-6288</td>
<td>ABBBS. 8 PM-6 AM.</td>
</tr>
<tr>
<td>Louisville</td>
<td>201-691-7441</td>
<td>ABBBS. 10 PM-6 AM.</td>
</tr>
<tr>
<td>Memphis</td>
<td>206-233-5438</td>
<td>Apple Crate II. Features the "Apple Doctor" service. Trs-80-based system serving a small but active company called The Peripheral People. Ask about their "Micro-connection" modem.</td>
</tr>
<tr>
<td>College Station</td>
<td>713-293-6080</td>
<td>ABBBS.</td>
</tr>
<tr>
<td>Seattle</td>
<td>206-723-3322</td>
<td>ABBBS.</td>
</tr>
<tr>
<td>Seattle</td>
<td>(206-723-DATA)</td>
<td>ABBBS.</td>
</tr>
</tbody>
</table>
CAT-100

FULL COLOR GRAPHICS

Complete line of color imaging systems with high resolution real time video FRAME GRABBER for the S-100 bus.

Capture and digitize a video frame in 1/60th of a second. Store up to a million bits of image data in on-board buffer. By software, select the best resolution for your application from 256 to 1280 pixels per TV line. Display your digitized image or your computer processed image with up to 256 gray levels or 65,536 simultaneous colors on standard B/W, NTSC or RGB color TV monitors.

Features:
- Highest quality 480x512x8 digital video image
- Input capability from TV cameras or other sources
- Variety of synchronization choices
- 2 selectable video A/D conversion circuits
- Choice of 1, 2, 4, 8, 16 or 24 bits per pixel
- 32K-byte image memory on the basic system
- 64K, 128K, 192K and 256K-byte system capacity
- High resolution lightpen input
- Photographic trigger control input
- Software selectable system parameters
- Stand-alone intelligent graphics unit with universal interface

Accessories:
- RGB color monitor
- High performance lightpen
- Hard copy printer/plotter
- Software packages available

441 California Avenue
Palo Alto, CA 94306
415/494-6088

Send check or money order instead of credit card and take a 3% discount on any purchase. $10.00 min.

FREE CATALOG
NEW!

COLOR FOR TRS-80* & YOUR COLOR TV

JUST PLUG INTO EXPANSION BUS ~ NO MODIFICATION

$149.95

REGULARLY $189.95
WITH CASE, CABLE.
POWER SUPPLY & SOFTWARE CASSETTE.

$650.00*
$250.00*
$250.00*
$2.50
INTRODUCTORY OFFER
UNTIL SEPT. 15, 1980

$99.95

REGULARLY $129.95
LESS CASE, CABLE AND POWER SUPPLY.

64x32 GRAPHICS IN EIGHT COLORS EXPANDABLE TO 128x192 FOUR COLORS OR 256x192 SINGLE COLOR. ASCII UPPER WITH INVERSE VIDEO. MIX LOW-RES GRAPHICS & ASCII ON THE SCREEN. BOTH MODELS INCLUDE RF UP-MODULATOR PARTS.

SOME ASSEMBLY REQUIRED.
ONE YEAR EXCHANGE WARRANTY ON PARTS.
ADD $7.00 FOR 48K SYSTEM.

*TRADEMARK OF TANDY CORP.

CP/M61 – based Business Software for TRS-8082 computers on the fastest Mod-II CP/M with the most features!!!

• Over 610,000 bytes/disk
• Downloading package included
• 1,200 baud operation of serial printers without data loss
• Single drive backup
MOD-II CP/M $250.00 MOD-I CP/M $150.00

The following software for Mod-II CP/M only unless otherwise stated (* requires CBASIC2):

RM/COBOL® – Only COBOL for CP/M with alternate keys (multi-key ISAM), CRT screen handling, interactive debug, 280 code, and the most useful Level 2 features. Compatible with Tandy's COBOL—but runs faster! .. $495.00

PMS (Property Management System) – Interactive, menu-driven system includes full G/L, budgeting, cash journal, delinquency list, tenant activity/rent roll, complete audit trail and reports on vacancies, lost rent, and vendors .. $650.00* demo disk & manual

APH (Automated Patient History) – General-purpose question-asking, answer-printing system furnished as self-administered review-of-systems general patient history (Mod-I also)! $175.00*

Osborne & Assoc. CBASIC source programs (Mod-I also):
Payroll w/Cost Accounting .. $250.00*
Accts. Payable/Accts. Receivable .. $250.00*

Verbatim® media: (Qty. 100 prices)
5¼” single density ... $2.50 ea.
8” certified double density .. $4.00 ea.

8” single density ... $3.00 ea.
450’ tape cartridges .. $20.00 ea.

MAGIC WAND® – Full-feature word processing, true proportional spacing, file merging, and use of full-screen editor for source programs or data ... $400.00

RPA (Residential Property Analysis) – Analyzes income and expense, financing, taxes, inflation and depreciation on home, condo, or apartments over a user-selectable time. Shows payoff in terms of ROI, Cap rate, cash-on-cash. Amortization schedules and worksheet ... $300.00* demo disk & manual ... 35.00*

BIC (Rent/Buy Comparison) – Sales or investment tool to compare renting and savings account investment vs. purchasing a particular property ... $250.00* demo disk & manual ... 35.00*

General Ledger w/Cash Journal ... $250.00*
O&A CBASIC Books (ea.) .. $ 20.00

CBASIC2® (Mod I or II) .. $110.00

FOR JUST $149

1011 WEST BROADWAY
MINNEAPOLIS, MINNESOTA
55411
(612) 522-6631

CP/M® = By§feem§n§
ASCII = By§feem§n§
OPTIONAL: 1010 BROADWAY

TRIED & TESTED

Integrated
Service
Systems Inc.

11 Riverside Court
Caversham, Reading, England
TEL: (0734) 470425

A

Distributed in U.K. by:
Microcomputer Applications Ltd.

Cybernetics
8041 Newman Ave., Suite 208
Huntington Beach, CA 92647
(714) 848-1922

Reader Service index—page 241
Microcomputing, August 1980 129
Let PET Design Your Next Power Supply

Make your computer an engineer/draftsman.

William R. Moore
2035 Barberry Lane
Bowling Green, KY 42101

One of the first programs I purchased after getting my PET computer was George Duisman's Bridge Challenger program. Since the program was almost 6K in length, my PET ran out of memory after playing only a few hands.

I decided to add an additional 4K of memory to the PET, since the memory expansion connector made this addition easy. However, I soon found out that the PET power supply was not capable of supplying the additional current. A 5 volt, 1.2 Ampere power supply would be needed to power my memory board.

As I pondered over the design, I decided to let the PET design the power supply. After all, a computer should be capable of doing basic power-supply design, and maybe the PET graphics could be used to draw the schematic.

I wrote the program to use the National Semiconductor LM317 regulator which is an adjustable three-terminal regulator capable of providing dc voltages from 1.2 to 30 volts at currents up to 1 Ampere. The LM317 comes in three case sizes—TO-5, TO-220 and TO-3 for increased power dissipation. Since the LM317 can only handle currents up to 1 Ampere, larger currents will pass transistors.

The Program

The program will design a dc power supply from 1.2 volts to

```
GO TO 9
REM GRAPHICS FOR SCHEMATICS
PRINT$
PRINT"$D1=$D2=$IN4002$
PRINT"P1=P2=P4$
PRINT"ON OUT$
PRINT"P3=P4$
PRINT"LM317$SW$
PRINT"120V$SW$SW$
PRINT"P3=P4$
PRINT"LM317$SW$
PRINT"R1=7$
PRINT"P1=P2=P4$
PRINT"OUT$
PRINT"R1=7$
PRINT"P1=P2=P4$
PRINT"R1=7$
PRINT"P1=P2=P4$
PRINT"OUT$
PRINT"R1=7$
PRINT"P1=P2=P4$
25 volts and load currents up to 5 Amperes. It will specify the necessary transformer characteristics for you, or you may specify an available transformer. If you specify the transformer, you must not call for a transformer significantly larger than the minimum required; otherwise, excessive power dissipation will occur in the power supply, especially for load currents greater than one Ampere.

Lines 5 through 62 in the program listing develop the power-supply schematics. Statements 5 through 62 use the hyphen for two distinctly different purposes. A hyphen above a character in the listing means that the shift key is to be depressed for that character. This is required since the majority of the graphic symbols on the PET keyboard are in the shift mode. The second use of the hyphen is to represent spaces when they are essential. Hyphens between characters (bottom of a line) are used for this purpose.

Photo 1. PET’s graphics capabilities used for a 5 volt, .5 Amp power supply.

Statements 5-62 are double-spaced for clarity due to the double use of the hyphen. I have also used abbreviations used in the listing for clearing the screen (lowercase cs) and moving the cursor down (lowercase cd). I used the abbreviation for print (?) for all statements in the listing. Program execution may begin at statement 108 to eliminate introductory remarks.

Photo 1 shows the design for a 5 volt, half Amp regulated supply. A transformer having a minimum secondary voltage of 8 volts RMS would be required. The LM317 device contains most of the necessary electronics; only a 1400 uf, 12 V dc capacitor and two resistors are required to complete the design. The listing determines the maximum thermal resistance of the heat sink required.

The schematic diagrams generated by the computer for power-supply designs requiring one or more series pass transistors will always show one
series pass transistor (2N3055) with the number of total parallel transistors in parentheses. Photo 2 shows an example of a 20 V, 2 A power supply requiring one external 2N3055 series pass transistor.

In these cases, all of the load current will flow through the transistors, except for approximately 30 mA, which will flow through the LM317. This means that the regulator will not require a heat sink; only the series pass transistors will require a sink.

The power supply designed for my 4K memory expansion worked the first time and has continued to perform without problems. I built and checked out fifteen other power-supply designs up to 25 volts @ 4 Amps. I was limited to building a 4 Amp power supply due to the transformers available. All power supplies built and tested were stable and had low ripple output. You can add a 1.0 uF tantalum capacitor across the output to ensure low output impedance at high frequencies.

Photo 2. The author's PET showing a power-supply design using a Darlington connection for higher output current.

### OHIO SCIENTIFIC

#### CI-SUPERBOARD

**HARDWARE — LOW COST EXPANSION PROJECTS**

**SOUND GENERATOR**—Create sounds like phasers, musical organ, explosions, race car motor and much more. Complete documentation on how to build and where to get the parts plus a demo program.

**LIGHT PEN**—Step by step procedures on how to build and how to adjust the sensitivity. Plus 2 demo programs. EZ to build and lots of fun.

**SOFTWARE**—Entertainment graphic games.

**ASTROIDS**—6K similar to new arcade video game. Navigate through space avoiding and destroying asteroids and hostile alien spaceships.

**ENTRAPMENT**—Compete against the computer or another player, trying to trap your opponent in a fast action, reflex game with skill factors.

**BATTLESTAR**—You are the commander, your mission is to seek out and destroy Cypton warships. A challenging game.

**CRUISE MISSILE**—Set the angle and velocity of the missile for the long range target. A challenging game.

**DEPTH CHARGE**—Destroy the enemy subs before they surface and destroy your ship.

**INTESTINE**—The card game where you test your luck by trying to break the casino bank.

**Special Offer**—Complete Software Set — Send check or money order to:

**DARE DATA & DESIGN**

P. O. BOX 8433 BALTIMORE, MD 21234

**PROFESSIONAL APPLE II SOFTWARE**

**THE ELECTRIC GRADE BOOK** — A complete disk based grade book and grading system. You can keep track of all of your class records, determine class averages and prepare ranked lists for each class. The system will handle a whole year of assignments for a large class and you can setup separate systems for each class. Will operate with one disk or two. In Applesoft II. (Programmable BASIC on disk $176).

**PERSONAL ACCOUNTING SYSTEM** — A simple, yet powerful summary accounting system designed to make personal accounting, budgeting and tax preparation effortless. A few simple keystrokes posts, stores and prepare reports for better personal finance. Applesoft II and disk. (Disk $80).


TO ORDER

CALL TOLL FREE

(800) 824-7888

In CA Call 800 852-7777

Shipping $3.00. CA Residents 6% tax.

*132 Microcomputing, August 1980*
522 NEXT I
523 A-R=RES (25-1)
532 PRINT "NUMBER OF EXTERNAL 2M3#55 OR EQUIVALENT"
531 PRINT "TRANSISTORS REQUIRED IS SER" 
530 PRINT "-cd TYPE 1 AND RETURN TO SEE SCHEMATIC"
533 INPUT B IF B=1 THEN GO TO 495
534 IF CT=1 GO TO 65
535 GO TO 495
536 IF CT=1 THEN GO TO 539
537 GO SUB 42
538 GO TO 619
539 GO TO 537
540 GO TO 619
541 GO TO 537
542 PRINT "cd DESIRED OUTPUT VOLTAGE EXCEEDS 25 Volts"
543 PRINT "Type in desired output voltage output voltage"
544 GO TO 115
545 PRINT "cd DESIRED OUTPUT VOLTAGE IS LESS THAN"
546 PRINT "MINIMUM OF 1.2 Volts"
547 GO TO 546
548 PRINT "DESIGNED LOAD CURRENT EXCEEDS 5 AMP"
549 PRINT "MAXIMUM"
550 GO TO 115
551 PLR GO TO 125
562 PRINT "cd SPECIFIED TRANSFORMER IS TOO SMALL FOR"
563 PRINT "THE DESIRED OUTPUT OF 100 Volts"
564 PRINT "cd TYPE IN TOTAL RMS SECONDARY VOLTAGE"
565 GO TO 199
566 PLR PRINT "cd LOAD CURRENT TOO SMALL TO USE" _
567 PRINT "CAPABILITIES OF THE LM 317"
568 GO TO 135
569 END

THE OHIO SCIENTIFIC CHALLENGER 1P
AT SPECIAL SAVINGS!!!

Purchase an Ohio Scientific Challenger 1P (4K) at $349
Receive an additional 4K of static RAM ($70 value) free!!

This offer is good until 9/18/80 or so order now, Send certified funds, personal check, or VISA/Master charge. Personal checks require 9-10 days to clear and credit card orders are subject to a 4% surcharge.

Include $7.00 for UPS charges and insurance
Enclose SASE and $2.00 for OSi catalog.

THE COMPUTER CENTER
51591 US 31 N
SIBLEY STREET IN 46637
(219)277-4655

Connect your TRS-80, Apple or any other computer to the phone lines.

USR-330 Origin—Auto-Answer Modem

- 0-300 Baud
- Stand Alone
- RS232
- 1 Year Warranty
- Crystal Controlled
- Bell 103/113
- State of the Art LSI circuitry
- 5 stage active filters
- FCC certified for direct connection to phone lines via standard extension phone jack

Call or write for free literature

U.S. ROBOTICS, INC.
3071 W. LAKESIDE AVE.
DIAMOND BAR, CA 91740
(312) 733-0497

Microcomputing, August 1980 133
Get Your PET on the IEEE 488 Bus

Part 2 of this "opus computerus" examines the file characteristics of the IEEE 488 bus.

Gregory Yob
Box 354
Palo Alto, CA 94301

Your PET has a "built-in" way of communicating through the IEEE 488 bus. In BASIC, the IEEE 488 looks like a file—just as the cassettes are files. The OPEN statement is used to specify a physical device number of 4 to 30, and the open logical file now talks via the IEEE 488 bus.

A complete understanding of PET tape files is a prerequisite for working with the IEEE 488 as a BASIC file. An article in the January 1979 Kilobaud Microcomputing ("PET Techniques Explained") covers many "innocent" errors that will result in mysterious malfunctions.

IEEE 488 Information Transfers

Talking to a Device.

1. OPEN a BASIC file to the device's address. For example, OPEN 1,4 will open the IEEE bus to device 1,4. Your BASIC program will see this as file #1.

2. PRINT# to your OPENed file. PRINT# "HELLO, DEVICE" will address the device to listen, send the string HELLO, DEVICE, add a carriage return with EOI true and then issue the UNT (Untalk) command.

3. Repeat step 2 as needed. Note that after each PRINT#, the IEEE bus is free, since the UNT has been sent.

PRINT# will send the same characters, including the skip character after numbers, as PRINT does to the screen. If you want to send several items, be sure that any needed delimiters, such as ",", are included.

Listening to a Device.

1. OPEN a BASIC file to the device's address.

2. Use INPUT# or GET# to fetch a line or a character from the IEEE bus.

3. Check the status word, ST, for an error, such as time-out. If the device is slow, the PET will complete the INPUT# or GET# if no error, and put a nonzero value into ST, which must be checked immediately after the I/O operation. If ST indicates a time-out, jump back to step 2.

4. Convert the data from the INPUT# or GET# as needed, and if more is needed, go to step 2.

Note that after each INPUT# or GET#, the UNT command is sent to the IEEE bus. This will truncate long messages from the device, especially with GET#. Also note that INPUT# (string) and GET# (string) work the best. The BASIC string functions (MID$, RIGHT$, LEFT$ and VAL) will help you get the data into a usable form.

Talking to More than One Device.

1. OPEN a file for each device.

2. Using CMD, send a dummy message to each device. For example, CMD 1:CMD 2:CMD 3 will set up each device (as specified in the OPENs for files 1, 2 and 3) by sending carriage returns to the devices and leaving them as listeners on the bus.

3. PRINT# the IEEE bus. Any of the OPENed files may be used.

4. Repeat steps 2 and 3 as needed. Since PRINT# ends with the UNT, step 2 must be repeated after each PRINT#.

Transfer from One Device to Another.

1. OPEN a file for each device.

2. CMD to the device that is to be the listener.

3. INPUT# from the device that is to be the talker.

4. Repeat step 3 as needed. INPUT# does not send a UNL, so the device that was CMDed remains on the bus as a listener. All information sent by the talker to the PET is also received by the listener. To turn off the listener, use a PRINT# to the listener's file. If the talker is slow, check ST and repeat step 3 as required.

LISTing a BASIC Program to a Device

1. OPEN a file to the device.

2. CMD to the device.

3. Enter the LIST command.

4. When the LIST is finished, do a CLR.

The PET's graphics and cursor characters will not print correctly on a standard ASCII printer. (I have a BASIC listing program available.)

The best way to learn the PET files and IEEE 488 is by specific examples. After a detour through CMD, we will continue with two examples. These should provide you with enough Information to get started. If you have no success, refer to the section on Common Errors (found later in this installment).

CMD

CMD is an unusual PET command. Consider its functions:

1. Anything that BASIC wants to say is now muted to the device that CMD'd file number refers to. If this isn't the screen, nothing that BASIC says will appear on the screen.

2. If a list of variables and literals is provided after the CMD, they will be sent to the device in the same way as PRINT# will.

3. However, if the device is on the IEEE bus, no UNL will be sent, so the device will remain in the listening state and receive any following data sent on the IEEE bus.

To see how CMD operates, get two scratch tapes and enter the program in Example 1. Now SAVE and VERIFY this program on one of your tapes. Put the other tape in the tape unit and execute the following:

OPEN 1,1
PRESS PLAY & RECORD ON TAPE1

Perform this and wait until the tape stops.

OK READY.
Now enter CMD 1. Note that READY didn't appear; it was provided by BASIC and is now residing in the tape buffer. The cursor is blinking below the C in CMD. Continue with:

LIST
CLOSE
CLR
READY.

Note that the CLOSE 1 didn't get the READY back. It took the CLR to return BASIC's messages to the screen. If you enter LIST, the program will appear on the screen. Rewind the tape and RUN. Three asterisks now appear after the RUN. These were printed by the program. This is one reason I don't trust my PET after a CMD. The text between the OK and the ending READY was found as a data file.

When the PET was under the influence of CMD, the letters you typed in were put onto the screen. This echoing is done by the PET's operating system, so CMD won't put these out to the device.

Though CMD looks like a good way to LIST program to tapes as data files, there is a snag. My example is shorter than 191 characters, and a LIST via CMD isn't smart enough to "jiffy" the data tape (this has been fixed on the new PETs). You run the risk of losing tape records when you try to read an "unjiffed" tape.

Try to verify that CMD 1; "HELLO OUT THERE" will print HELLO OUT THERE onto the tape. Remember that if you CMD a device on the IEEE 488 bus, any PRINT# to the bus will require a repetition of the CMD if you want the device to remain in the listening state.

Talking to the Clock Again
(For a description of the HP clock see part 1 of this article.)

First, you must check the device address on the DIP switch (which will be near the 488 female connector) and make sure the address is in the range 4 to 15. The enter a short program (Example 2) into the PET. This program consists of three subroutines to facilitate communicating with the clock. Remember that the PET will not accept an INPUT statement as a direct command.

First, enter GOSUB 10 as a direct command. This opens file 1 to device 7, which is our clock on the IEEE bus. OPEN merely sets things up; nothing is sent to the bus yet.

To read the time, enter GOSUB 200:

GOSUB 10
SAY TO CLOCK? 01000000000000000000000000000000

The clock starts at day 1. To set to day n, use n – 1 Ds. To set the hour, enter the following.

GOSUB 100
SAY TO CLOCK? 01000000000000000000000000000000

Minutes and seconds are set similarly.

GOSUB 100
SAY TO CLOCK? 01000000000000000000000000000000

We are now set to 9:17:03. When I did this by hand, the clock moved forward about a minute, so the number of M's used should be changed to accommodate for this.

Talking to the HP 8165A Programmable Signal Source
(For a description of the HP 8165A, see part 1 of this article.)

The 8165A is the fine instrument with many switches, knobs, buttons and options and a correspondingly wide array of IEEE 488 commands (see Fig. 12, part 1).

The precise contents of each example concern the 8165A, which is an instrument you will probably never meet! My intention is to show you how direct

Stop fiddling with your cassette cables! Install our TBEEP and forget it forever!

TBEEP™ 1

For Level II and Disk Users — A self-contained audio alert beeper with a pager-like tone. Plugs in-line with "AUX" cable from your TRS-80 (Requires 9V Battery)...

$ 19.95

TBEEP™ 2

A TBEEP kit you install inside your TRS-80 keyboard.

- Completely assembled and tested.
- Attach to keyboard's PC board with double-sided foam tape (included) and solder three wires to easily located points on keyboard unit. Installs in minutes.
- Uses power from your TRS-80. No battery required.
- DEALERS! Install when modifying your customer's TRS-80, and include TBEEP's simple four word BASIC command in your off the shelf Software.

TBEEP 2 Kit (with complete instructions) $ 12.95

Send Check or Money Order to
MARKETING CENTER
P.O. Box 66602
Indianapolis, IN 46268

A Quote on our new

Integrated Accounting System (IAS):

"... an excellent value—particularly good are the error checking and data entry procedures—documentation is good (both within the programs and separately provided materials)."

Mr. E. Lindow
Director of Computer Operations
Metic Industries

Some of the IAS features include:

- Custom Chart of Accounts limited only by available memory (a 32K system will support up to 200 accounts including DOS and BASIC).
- Financial reports (service or manufacturing) including Income Statement with current and Year-To-Date totals, Balance Sheet and Worksheet. Provision for "Header" and "Subsidiary" accounts. Check register. Account balances at any time. Up to 1100 Accounts Receivable. AR includes read-to-mail bills, automatic aging of AR accounts and posting to General Ledger. Up to 1100 Accounts Payable with check printing. Payroll supports up to 200 employees and permits payment by week, bi-weekly, semi-monthly, monthly, hourly or on salary or any combination thereof. Prints paychecks and W2 forms. Maintains all employee data with full editing. Current, quarterly and YTD employee totals. IAS includes over 30 reports and listings to give you the information you need when you need it. Over 65 programs in all!


IAS requires 32K of memory, North Star Release 4 or later of DOS and BASIC and two disk drives. Printer output is provided for, but not required. Specify video device when ordering.

ECOSOFT
Phone orders only: (317) 253-6828
P.O. Box 66602 Indianapolis, IN 46268

© Reader Service Index—page 241

Microcomputing, August 1980 135
mode commands—that is, BASIC statements without line numbers—can be used to control an instrument and help in debugging.

First, I hooked the 8165 to the 488 cable, and the PET turned on. The 8165 was addressed to 6. When the PET came on, IFC was true for about one second. This put the 8165 in local mode, where the front panel works as usual. Many instruments will ignore their front panels when the 488 bus addresses them. Once the PET addresses the 8165, you cannot control it from the front panel anymore. (An LED indicates this on the 8165.)

The following short program takes care of input from the instrument:

```
10 INPUT#, A$ 20 PRINT A$
This substitutes for the illegal direct command (INPUT#, A$: PRINTA$), which would like to use, but the PET forbids (try it and see).
```

Since I wanted the 8165 to output a 1 kHz sine wave at an amplitude of 1.5 volts, I used the following IEEE commands:

- **F1**—Set to sine wave
- **FRQ** 1 kHz—Set frequency
- **AMP** 1.5 V—Set amplitude

I set to normal operation (continuous signal output)

First, open the IEEE file:

```
OPEN 1,8 READY.
```

Then send the settings:

```
PRINT #1,"F1" (At this point, the "Remote" LED went on, and I can no longer work the front panel) PRINT #1,"FRQ1KHZ" PRINT #1,"AMP1.5V" PRINT #1,"11"
```

Nothing happened! My scope showed only a flat trace! Upon reviewing my steps, I noticed that I overlooked the Disable Output (OD) and Enable Output (OE) commands. I entered

```
PRINT #1,"OE", and a sine wave appeared on the scope.
```

You could also send this setting as one string. For example, I used

```
PRINT #1,"F2FRQ1.2KHZAM1.2V10E" sets up a 1.2 kHz triangle wave at 1.2V amplitude.
```

The 8165 can also report some of its switch settings. Now we can use the tiny program in the PET:

```
GOTO 10
F1 D2 12 FM0 AM0
```

Since the PET has difficulty with GOSUB in direct mode and the IEEE bus, we must make a program change:

```
10 INPUT#, A$ 20 PRINT A$ 30 RETURN
```

We will quickly be reminded that any time we change a program, all the variables, including opened files, will be lost.

```
GOSUB 10
?FILE NOT OPEN ERROR IN 10
```

So we try again:

```
OPEN 1,8
GOSUB 10
F1 D2 12 FM0 AM0
```

The PET will provide the ?SYNTAX ERROR about 90 percent of the time when the IEEE is accessed via the INPUT# statement and the PET is executing a directly called subroutine. However, this doesn't appear to affect anything. I avoided this by not making the little program a subroutine the first time.

So, if you are in a pinch, remember that the PET's direct command capability can rescue you with IEEE 488 devices and provides an inexpensive way to explore a new instrument.

Talking to More Than One Device

Now that each of the instruments has been in the bus individually, the next step is to try the 488 with both of them on at the same time. I connected the HP clock and the 8165 to the 488 bus and gave the clock address #7, and the 8165 address #8.

Then I entered the short program for INPUTs:

```
10 INPUT #1, A$ 20 PRINT A$ 30 END
110 INPUT #2, B$ 110 PRINT B$ 120 END
```

First, OPEN the files:

```
OPEN 1,7
OPEN 2,8
```

If you get a ?FILE OPEN ERROR, just enter CLR and start over.

Taking a peek at the clock resulted in:

```
GOTO 10
0130051957 (30 Jan., 5:19:57)
```

And peeking at the 8165 gets me:

```
GOTO 10
F1 D2 12 FM0 AM0
```

which is the usual mystery message that the 8165 says to me. There isn't any point in explaining this message, for your instrument will say something different and meaningful only to you.

```
PRINT #1 and PRINT #2 will work just fine, and so two instruments and the PET can live in harmony together.
```

A Gotcha

I decided to turn off the 8165 with the PET set up for two instruments as described above. Sure enough, strange things happened.

```
The clock worked fine:
GOTO 10
0130052525
And just for fun, look what happens with the 8165 (which isn't on):
GOTO 10
F1 D2 12 FM0 AM0
```

The 8165 has some internal batteries to store and memorize settings until it is turned on again. It also will respond to the IEEE 488 bus.

Now to try things in reverse—the clock doesn't have any batteries. (Clock is off, 8165 is on.)

```
GOTO 10
F1 D2 12 FM0 AM0
The 8165 is fine
GOTO 10
F1 D2 12 FM0 AM0 What's this?
```

The 8165 will reply to any address if it is the only device on the bus. The clock acts in the same way. (I don't know if this is a PET fault or an HP design decision. Check your device.)

If your program is intended for more than one device, this can be a disaster. Make sure all required devices are operating when using multiple devices on the bus.

I ran into another gotcha: the 8165 wouldn't accept every frequency change. I tracked this problem down to the presence of the HP clock on the bus. When I turned the clock off, everything worked fine. When debugging, remember to have only one device on your bus.

Common Errors

In theory, if you have under-
**SORT-80**

**Produced exclusively for Mark Gordon Computers by SBSG**

TRS-80* disk files may be sorted and merged using SORT-80, the general purpose, machine language, sort program. Written in assembly language for the Z-80 microprocessor, it can:

- Sort files one disk in length
- Sort Direct Access, Sequential Access and Basic Sequential Access files
- Reblock and print records
- Recontrol files from disk
- Be executed from DOS
- Be executed from BASIC
- Be inserted in the job stream
- Allow parameter specification
  - input/output file specification
  - input/output record size
  - lower/upper record limit
  - print contents of output file
  - input/output file key specifiers

The minimum requirement is a 32K TRS-80* Level II computer with one disk drive or a single drive Model II computer. It will operate on 35, 40 and 77 track drives, and has been tested on TRS80 2.1, 2.2, 2.3, NEWDOS 2.1, 3.0, and VTOS 3.0.1. It is compatible with most machine language printer drivers. Sort time is fast: for example, a 32K file will sort in approximately 40 seconds. $59.

**PCS**

**Program Catalog System from SBSG**

This menu driven system provides the TRS-80* user with a computerized method to keep track of all programs and data files. The idea is to build and maintain on a file a disk detailing each program including program name, size, creation date, and a brief narrative as to function. Programs are provided to:

- create, update, or display
- print in disk number order
- print in alphabetical order
- print file listing
- create a file automatically

With a 32K system you can catalog 150 programs; with a 48K system you can catalog 300 programs; or you can catalog 650 programs without sort. $29

---

**InfoBox**

**The information manager**

InfoBox is the easiest-to-use information manager available for the TRS-80*. It's ideal for keeping track of notes to yourself, phone numbers, birthdays, inventories, bibliographies, computer programs, music tapes, and much more. This fast assembly language program lets you enter free-format data, variable length items and lets you look up items by specifying a string of characters or words that you want to find. You can also edit and delete items. Items entered into InfoBox can be written to and read from cassette and disk files. All or selected items can be printed on a parallel or serial printer. InfoBox occupies 3K. Specify cassette or disk version. Special introductory price $24.95 until June 15: $29.95 after.

**DBUG+**

**The ultimate monitor/disassembler**

Compare the features and price of DBUG+ with other monitor/disassembler programs. It offers nine true, single-byte breakpoints, single step program execution, hex and decimal arithmetic including multiply and divide and conversions, ASCII dump that distinguishes all 256 codes, disassembly to screen and printer in full Zilog mnemonics, and register set command. It also has the usual port I/O, hex and decimal memory dump, change, move, copy and exchange memory features offered by others. Ideal for the user who wants to experiment with assembly language or to write subroutines to call from BASIC; essential for the serious programmer. Special introductory price $24.95 to June 15: $29.95 after.

**FMS**

**File Management System by SBSG**

This menu driven program allows you to define and create files for your own use. You can:

- sort these files in:
  - ascending order
  - descending order
  - on up to 3 separate fields
- scan the files
- summarize any numeric or dollar data fields
- print the field records
- create, add to or delete field records

$49.00

---

Model II versions of SBSG software available. Dealer inquiries invited.
The PET IEEE 488 File I/O Statements

The PET sees the IEEE 488 bus as a file, and the file I/O statements apply to IEEE 488 transfers. Be sure you know the cassette file I/O before tackling the IEEE 488 bus.

The PET file I/O statements are:

- OPEN (file number, device number, secondary address, filename)
- OPEN instructs the PET to associate the file number with the desired I/O device. BASIC uses the file number in its PRINT$, INPUT$ and GET$ statements to determine where the I/O is to take place. The file number may be from 1 to 255.
- The device numbers are assigned as follows:
  - OPEN
    - 0—Keyboard
    - 1—Cassette unit #1
    - 2—Cassette unit #2
    - 3—Screen
    - 4—30 IEEE 488 bus

This implies that your IEEE device must be addressed in the range of 4 to 30. Most IEEE devices have a switch or jumpers that permit the changing of their addresses. The secondary address and filename are optional. However, if you want to use the filename, the secondary address must also be included. The secondary address has the range of 0 to 31.

If the filename is not specified, the open statement sends nothing to the IEEE 488 bus. When BASIC sees the PRINT$, INPUT$ and GET$ statements, the device number (and secondary address, if specified) are put on the IEEE bus as part of the usual transfer sequences.

If a filename is specified, (i.e., A$ or "SAME NAME"), the open statement activates the IEEE bus making ATN true and sends:
- LISTEN (to the appropriate device)
- SECONDARY ADDRESS (Op with 11110000)
- FILENAME (all characters)

This permits suitably complex command sequences that require ATN to be true to be sent. If the command sequence has to be repeated later, CLOSE the file and OPEN it again. I haven't been able to check if the above assertions about the filename are true. If you have a bus analyzer, check this out!

- PRINT$ (file number, values to be sent)
  - First, don't use the abbreviation ?; it won't work when executed, you will see "SYNTAX ERROR" and will list as PRINT$ Spelling out PRINT! completely.
  - PRINT$ sets ATN true and sends the device number as a LISTEN address. If a secondary address as specified, it will be sent also. The device number and secondary address are taken from the appropriate OPEN statement.
  - ATN is then made false, and the values to be sent are transmitted as ASCII characters in exactly the same way as they would be sent to the screen. For example, if a number is sent, a cursor right character follows the last digit. If you use "", to separate columns, lots of cursor rights are sent. If the PET feels a number should be in scientific format (i.e., 1.53E-07), that's what is sent! EOI is made true with the last character of data sent.
  - After the values are sent, an UNLISTEN is sent with ATN true, and all listening devices are set free.

- INPUT$ (file number, values to be input)
  - INPUT$ sets ATN true and sends the device number as a TALK address. If a secondary address was specified, it will be sent too. The pertinent OPEN statement is used for these values.
  - ATN is then made false, and the PET accepts characters from the device to the PET's input buffer. If the talker activates EOI, a carriage return is added to the end of the buffer.
  - After the characters are accepted and carriage return or EOI is recognized, the PET sets ATN true and sends an UNTALK, which releases the device.
  - BASIC then scans the input buffer in the same way that an ordinary INPUT statement looks at what is typed in. This means that commas and quotes will have the same effect as with normal INPUT. It is best to use an INPUT (string) form and hope your device doesn't send any commas!
  - As with cassette INPUT$, an 80-character buffer is used. If more than 79 characters arrive without a carriage return, the PET will go into "limbo," and all is lost. (New PETs have this fixed. Over 80 characters are ignored or worse, the buffer is initialized, and the first 80 characters are lost!) If you have a new PET, try it with cassettes and find out what happens.
  - INPUT$ is susceptible to "time out," and ST should be checked for a time out. Repeat the INPUT$ if a time out is detected.

The solution to this dilemma is to keep on trying! Write a loop that redoes the INPUT$ or PRINT$. In most cases, a slow device will send its characters rapidly enough — once it has its message ready.

Consider these two sample loops:

<table>
<thead>
<tr>
<th>INPUT$ or PRINT$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>210</td>
</tr>
</tbody>
</table>

If you want to mask for certain bits, you can use the AND operator, but parentheses are needed. The above examples would read:

110 | IF ST AND 1 THEN 100 |
210 | IF ST AND 2 THEN 200 |

The removal of the parentheses makes the PET see the expression as:

- IF ST AND 1 looks like IF ST AND 1 which will result in a SYNTAX ERROR. Use parentheses or rearrange the order of operations in these cases.

The literal principle. PET outputs to a file the same characters that it sends to the screen. This is also true for the IEEE 488. The PET's format for PRINTing a number is:

- (space or — sign) (digits) (optional exponent) (cursor right)
GETy (file number), (value for entry)

GETy sets ATN true and sends the device number as a TALK address and the secondary address, if specified. ATN is made false, and a single character is accepted.

Then, the UNTALK with ATN true is sent, and the character given to BASIC. For the reasons that make GET X unusable, be sure to only use the GETy (string) form.

The assertion of the UNTALK after GETy makes transmission of multicharacter messages from devices impractical, as most devices will try to repeat their message on repeated application of GETy.

As with INPUTy ST should be checked for a time out, and if timed out, the GETy should be repeated.

CLOSE (file number)

CLOSE releases the I/O assignments. The PET will allow a maximum of ten files OPEN at one time, and CLOSE will let you reuse an I/O assignment. If you OPEN more than ten files, old PETs will go into limbo and all will be lost. New PETs presumably have this fixed.

If the corresponding OPEN statement had a filename specified, CLOSE sets ATN true and sends the device number and secondary address (OREd 11100000). This feature is intended for PET peripherals.

CMD (file number), (values to be sent)

CMD initiates the same sequence as PRINTy and sends the values, if any, in the same way that PRINTy does. When finished, CMD does not send the UNLISTEN, so any devices addressed with CMD will listen to further CMDs or PRINTy to the IEEE bus.

All of BASIC's output will be routed to the device defined in the OPEN statement for the file number. If the PET is in command mode, this includes the READY*, error messages and LIST. If in run mode, any BASIC printouts, from PRINT to the screen, will go to the IEEE bus instead. A PRINTy will recover from the effects of CMD.

If you are using CMD in command mode, the cursor may not echo the RETURNs you press. The PET will 'echo' your keystrokes, but any outputs from BASIC will vanish to the IEEE device. The PRINTy to your IEEE device is the safest recovery from CMD. Remember that any editing of a BASIC program will destroy all variables. This includes open files and CMDs.

ST (status word)

After each I/O operation, the PET sets the value of a special variable named ST, which will hold its value until the next I/O operation. So the best policy is to check it immediately! The values of ST for the IEEE bus are:

1 Timeout on write
2 Timeout on read

64 EOE true
-128 Device not present

The PET waits for 64 milliseconds to see if a device will respond to the IEEE handshake. If the device doesn't, the I/O operation is quietly aborted, and ST is set. If you are INPUTting, you will get "nothing" or zeroes back. If you are PRINTting, everything seems to be all right. If your device is slow to respond, checking ST is mandatory.

PRINTy, INPUTy and GETy will return the 'DEVICE NOT PRESENT' error if the bus is in an illegal state (which is true if the bus has no devices or the LISTEN or TALK isn't responded to). ST will also be set.

LOAD, SAVE and VERIFY

The old PETs have a severe error in their IEEE software which prevents the functioning of LOAD, SAVE or VERIFY. The ATN line was left true during the data part of the transfer. This is why owners of old PETs who purchase the PET disk get the new ROMS; the disk won't function with the old ROMs.

The format is the same as with tapes:

LOAD (filename), (device number)
SAVE (device number)
VERIFY (filename)

Once the IEEE bus is set to listen or talk, the first four bytes must contain the beginning and ending addresses, + 1 of the block to be transferred. The transfer is then done as pure binary until finished. The bus is then released with an UNT or UNL as needed.

VERIFY will say 'VERIFY ERROR and set ST to 16 if any mismatches were found between the incoming data and the core image in the PET's memory. Since my PET is an old model with the original ROMS, I haven't been able to check LOAD, SAVE and VERIFY for the IEEE 488 bus.

This can raise havoc with an IEEE device that is expecting a character after the number.

Consider the following example:

RUN
80 NEXT J
10 PRINT "chr"; (clear screen)
20 FOR J = 1 TO 10
30 PRINT ""; (clear screen)
40 NEXT J
50 PRINT "hmr"; (home cursor)
60 FOR J = 1 TO 10
70 PRINT "is A NUMBER";

The asterisk after the number comes from the cursor right character that was sent to the screen. The cursor right follows

Microcomputing, August 1980 139
any numbers sent to the IEEE 488 bus.
The following program sets
the frequency of the 8165.
10 OPEN 1,& (The 8165 is at address B)
20 FOR J = 100 TO 2000 STEP 10
30 PRINT #1; "FRO"STR$(J)"HZ"
40 FOR K = 1 TO 1000
50 NEXT K (This is a 3 second delay loop)
60 NEXT J

When this is RUN, the 8165 gives
all signs of distress. The fre-
quency appears on the front
panel, but the LED that indi-
cates correct entry stays blink-
ing (not completed). Also, the
scope shows no change. The
PET screen blinks at intervals,
indicating that EOI is made true
now and then. (I suspect the
instrument is making this hap-
pen.)

The following modification
will fix this:
30 PRINT #1; "FRO"STR$(J)"HZ"
The STRS function converts a
number to the string that would
be PRINTed, without the cursor
right at the end! The general fix
for numbers is simple: convert
all numbers to strings before
putting on the IEEE 488 bus.

Fractions. Now that the fre-
quency example is working
right, how about trying some
other STEP sizes. Here is a sim-
ple change:
20 FOR J = 1 TO 2 STEP .01
30 PRINT #1; "FRO"STR$(J)"HZ"
The J loop was changed to do
the same thing, but in kilohertz.

Line 30 was changed to reflect
this. When RUN, it all works fine
until about 1.25 kHz—the 8165
now shows 1.25 kHz instead of
1.260. A look at J gives us the
cue we need:
BREAK IN 40 (Press STOP key)
PRINT J
1.25999999
The PET slips up when com-
puting with fractions... and
this eventually shows up. The
fraction .01 becomes a repea-
ting binary decimal, and after
repeated addition, the round-off
appears as a slight reduction of
the number being added to. In
this case, 1.260 turns into
1.25999999.

Catching this is easy... if J
were put onto the screen first!

35 PRINT STR$(J)

If you do this, the first "blow up"
comes at 1.22999999. Now you
are faced with a programming
problem: how to get around
nasty numbers. One way is to
take the INT function, such as:
STR$INT(J-100+.5)/100)
which rounds the number in the
hundredths place. More com-
plex tricks will be needed if the
PET insists on scientific nota-
tion, such as
2.35E-03
PRINT your IEEE output onto
the screen while debugging.

Next month, we will wrap
up our three-part series with a
further look at the programming
style with the IEEE 488. ■

---

**DISCOUNTS**

- 10%, 15% and more available.

**WE PAY**

Domestic U.P.S. shipping and
insurance on minimum orders.

**NO TAXES**

are collected on
out-of-state shipments

**TOLL FREE**

Order Number
800/531-7466.

**OPEN**

8:00 a.m. to 6:00 p.m.,
Central Time,
Monday through Friday;
9:00 a.m. to 6:00 p.m.,
Saturday.

Pan American Electronics
Incorporated

A Radio Shack
AUTHORIZED SALES CENTER

1117 CONWAY MISSION, TEXAS 78572
TOLL FREE ORDER NUMBER 800/531-7466
TEXAS AND PRINCIPAL TELEPHONE NUMBER 512/581-2765

---

140 Microcomputing, August 1980
YOU'RE FACE-TO-FACE WITH EVIL

It's Morloc The Wizard, the evil master of mayhem and illusion. He's threatening the village of Hagedorn. Your mission is to kill Morloc and save the village in this dangerous REALTIME computer game from Automated Simulations. Morloc lives in a 30-room Tower, where his minions and monsters do his bidding to create terrible hazards for you. You'll be attacked by Ogres, The Creeping Crud, Fire Elemental, Vampire Bats, Salamanders and his personal Genie. The fiend will even throw his devastating Fireballs at you.

And, just when you think you have him in your grasp, he'll teleport away. He's fearsome and lethal. If you can find the magical treasures in the Tower, you might be able to turn them against Morloc. Try to find them. Then, if you do, try to decipher their meaning and use them. Even worse, you're in REALTIME!

If you have a 24K PET, 16K TRS-80, or 48K APPLE, you can play "MORLOC'S TOWER" and come face-to-face with absolute evil.

HERE'S HOW YOU CAN TOUCH YOUR FANTASIES: Ask your dealer or rush $19.95 in check or money order to Automated Simulations, Dept. TW1 P.O. Box 4232, Mountain View, CA 94040.

Or, call our FANTASY LINE, toll free, 800-824-7888. Operator 861 to place your order and to tell us what other fantasies you would like to touch. (California, call 800-852-7777, Operator 861. Alaska and Hawaii, call 800-824-7919, Operator 861.)

I want to TOUCH my fantasies...Rush me "MORLOC'S TOWER" for $19.95 (CA. residents add 6%) I have: PET □ TRS-80 □ APPLE □

Payment enclosed _______ Bill my VISA □ M.C. □

Account # _______ Expires: _______

Name ____________________________

Address ___________________________

City _______ State _______ Zip _______

GUARANTEE

If I'm not completely satisfied, I will send "MORLOC'S TOWER" back to you in 10 days for a full refund.

© 1979 Automated Simulations
PRIAM
Hard Disks
Now Available from SIRIUS SYSTEMS!

PRIAM’s high-performance, low-cost Winchester disc drives speed up throughput and expand data storage from 20 megabytes to 154 megabytes. And a single controller can be used to operate 14 inch-disc drives with capacities of 33, 66, or 154 megabytes or floppy-disc-size drives holding 20 and 34 megabytes. So it's easy to move up in capacity, or reduce pack size, without changing important system elements or performance.

- Fast, Linear Voice Coil Positioning
- DC Power required only!
- 10 ms track-to-track positioning
- Simple, parallel Interface
- 90 ms Maximum Positioning Time
- 1.4 ms round latency

THE PRIAM LINEUP

<table>
<thead>
<tr>
<th>Model/Disc Size</th>
<th>Capacity (in MB)</th>
<th>Weight</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISKOS 2500 (14&quot;)</td>
<td>33MB</td>
<td>33 lbs</td>
<td>$999</td>
</tr>
<tr>
<td>DISKOS 6505 (14&quot;)</td>
<td>65MB</td>
<td>65 lbs</td>
<td>$1495</td>
</tr>
<tr>
<td>DISKOS 15400 (14&quot;)</td>
<td>154MB</td>
<td>154 lbs</td>
<td>$4995</td>
</tr>
<tr>
<td>DISKOS 2600 (8&quot;)</td>
<td>26MB</td>
<td>26 lbs</td>
<td>$2995</td>
</tr>
<tr>
<td>DISKOS 3400 (8&quot;)</td>
<td>34MB</td>
<td>34 lbs</td>
<td>$3745</td>
</tr>
<tr>
<td>DISKOS 570</td>
<td>5.3MB</td>
<td>floppy-size</td>
<td>(low)</td>
</tr>
<tr>
<td>DISKOS 1070</td>
<td>10.5MB</td>
<td>floppy-size</td>
<td>(low)</td>
</tr>
</tbody>
</table>

All PRIAM DISKOS Drives have a Transfer Rate of 1.03MB/sec. Optional SMD interface available for $150.

SIRIUS SYSTEMS offers cases and enclosures for all PRIAM Hard Disc Drives. All 14" Winchester Drives will mount in our 14" Standard Case. The 8" Winchester have two alternatives: a single drive case and a dual drive case. All SIRIUS SYSTEMS Winchester drive cases include a Power Supply, internal cabling, switches, fans, extra AC outlet (not switched, but fused) and possess very adequate cooling arrangements. When you finish the cases and mount the drive itself, you'll provide ease of use during operation. All Winchester Drive Cases are warranted for a full year and come in our standard blue-black color scheme. Consult us for current availability and pricing.

Remex RFD 4000/4001
8" Floppy Disc Drives
Double sided... Double density!!

$549.95

RFD 4001, 569.95

Offers quality and features found in drives costing much more! Single or Double Density, Single or Double Drive, Door Lock Included, Write-Protect Included, 180 Day Warranty, Compatible with Shugart 850/851. Low Power Operation ensures LONGER LIFE!! Model RFD 4001 offers Data and Sector Separator RFD/4000/4001 Technical Manual: 6.95

Connection Set #4 (AC, DC, Card Edge): 10.95

Remex 10000... If you've been looking for a less expensive floppy drive, but not wanting to sacrifice quality this is it!

$419.95

You get both in the Remex 10000! For only $419.95 look at what you get: 8" Floppy Drive Single or Double Density Hard or Soft Sectorizing Media Protection Feature Single Density Data Separator 180 Day Factory Warranty

Door Lock Option: $19.95 Write Protect Option: $19.95 RFD 10000 Technical Manual: 3.95

Interface Adapter (REMEM-to-Shugart): $14.95 (AC, DC, Card Edge): $10.95 (with Power Modules): $29.95

SIRIUS 8" DISK POWER MODULES

The Single and Dual Drive Power Modules are designed to provide AC or DC power for the drive. The single drive power module is the same power unit designed to power power for one (the Single Drive Power Module) or two (the Dual Drive Power Module— the DPP will power three RFD 4000s or 4001s). Floppy Disk Drives. Many features are included for safe and reliable operation and the Power Modules come with our standard 180 Day WARRANTY (the Open Frame Power Supply warranty is for 2 years). All Power Modules will work with the RFD 4000/1008 case (color schemes available).

Dual Drive Power Module (DPP) $139.95

Single Drive Power Module (SPP) $119.95

SIRIUS 80+ Perfect Add-Ons for Your Computer System!

The SIRIUS 80+ System includes automatic track-to-track access time, voltage, and track-to-track capability. It’s a microcomputer-augmented data storage interface that is designed to be used with all SIRIUS Winchester disk drives and is compatible with the TRS-80 and compatible with IBM's ready to plug in!

COMMON CHARACTERISTICS
- 5 ms track-to-track access time
- Auto-select
- 180 yard warranty
- Maximum speed stability —11.5%
- Single density (FM) or double density (MFM/DM)
- Ultra high reliability
- 2 year Power Supply Warranty

SPECIFIC CHARACTERISTICS
- The SIRIUS 80+ is a single sided, 40 track, highly reliable Floppy disk-aided disk-on, offering 5 more tracks than the Radio Shack Model, it cost $5 less. Formatted data storage is 1024/20K bytes single/double density.

SIRIUS 80+ 1 $359.95

SIRIUS 80+ 2 $449.95

The SIRIUS 80+ 3 is a single sided, 80 track, "Quad" density Floppy Disk unit. Offering 21 times the storage of a Standard Radio Shack drive, the 80 + 3 greatly reduces the need for diskettes, correspondingly. Additionally, because of the increased storage and faster track-to-track access time, the 80 + 3 allows more productive throughput for disk based programs!!! The 80 + 3 INCLUDES SIRIUS'S TRAKS-PATCH on Diskette. Formatted data storage is 2048/4096 bytes single/double density.

SIRIUS 80+ 3 $489.95

SIRIUS 80+ 4 $624.95

The SIRIUS 80+ Floppy Disk add-on is a double sided, 160 track (50 per side), 8" Winchester compatible drive. The 80+ 4 is equivalent to 4" standard Radio Shack drives — saves over 73% (not to mention diskettes!!!). (With a double density converter, the available memory is huge!) The 80+ 4 is similar to the 80+ 2 that it replaces configured as Drive 0 and any of the other three drives (with the standard Radio Shack Cable) or as any of the five drives (with the SD Standard Cable). The 80+ 4 INCLUDES TRAKS-PATCH on Diskette. (The plug board is also included.) Formatted data storage is 4096 single or 8192 bytes double density.

SIRIUS 80+ 4 $624.95

MPI 51/52...
A Great Reliable Mini-Drive!

- Fast! 5ms track to track access
- Exclusive Pullout-Bend Design
- Unique Door/Factor Mechanism
- Reliable 11.5% Speed Stability
- Single/Double Density Operation
- (for industry/ANSI Standard Interface)

MPI 51 (Single, Head, 40 tracks, 204K/40K)

$295.95

MPI 52 (Dual Head, 70 tracks, 35 side, Single/Double Density)

$349.95

MPI 91/92... NEW STATE-OF-THE-ART DISK DRIVE!

MPI 91

Single, Head, 60 tracks, 240K/40K

$389.95

MPI 92

Single, Head, 150 tracks, 60K/60K

$495.00

SONEX DISK Drives

1.5MF/1.2MF Density

"Unformatted data storage"

Introducing the Versatile, Low-Cost OMEGA Series Controller

As new technological advances bring down the cost of fast, reliable mass storage, there is a need for an inexpensive, versatile controller have become greater and greater. To meet this need SIRIUS SYSTEMS OMEGA Series Controller was designed.

The OMEGA Series Controller Module utilizes an on-board microprocessor to mediate data transfer to a wide variety of peripherals from an equally wide variety of host computer systems. Up to four Winchester Hard Drives (8" or 14") or five 5" Floppy Drives and/or up to eight 8" Floppy Drives may be in use at one time. Host systems interfacing is accomplished via a parallel or a serial interface. With the addition of a Personality module, the OMEGA Series Controller Module is directly compatible with the growing need for computer systems (among them the TRS-80, Apple, Heathkit, etc.). Other provision is made for the addition of a streaming tape drive, also.

SPECIFIC FEATURES INCLUDE:

- Control of up to twelve Floppy Disk Drives (engaged or unengaged in U.S. current hardware)
- 8" and/or 5 1/4" Floppy Drive Utilization
- Single or Double Density format
- Hard or Soft sectorized diskette operation
- Utilization of 'quad' density (96 bytes) 5 1/4 or 8" Floppy Disk drives
- Control of up to four Winchester type DISK Drive Modules
- 8" or 14" may interchange on the same cable
- Accommodates 8" and/or 14" drives of 140 or 280K or 1.2MF/1.5MF density
- Ultra-Fast data transfer
- Extremely flexible host/controller interfacing

SPECIFIC SOFTWARE FEATURES INCLUDE:

- Dynamic flow control via command block
- Extremely flexible format acceptance for unique data storage formats
- Easy interfaces to both existing and new operating systems (TRS-80, CP/M, etc.)
- Operates in either the open or closed mode or data string mode
- Performance parameters may be changed by EEPROM replacement or Dynamic Re-programming

Dedicated systems cards are also available on a limited basis for the STB-DUS and the S 100. These cards can be inserted into the Floppy Disk controller (under software selection) in addition to the regular OMEGA Series Controller Module features. Consult SIRIUS SYSTEMS for current price and availability for the entire line of OMEGA Memory Links (units). Dealer inquiries are invited.
Some Tips on Program Conversions

Lessons learned from converting a personal bookkeeping system.

Linda E. Bjelland
2266 Hollygrove Rd.
Memphis, TN 38138

A lot of software is available, but often it has to be converted from one system to another. I recently completed my first programming project on my new TRS-80 Level II 32K disk system, and it happened to be a conversion. It was an excellent tool for learning about my system and its capabilities. The program I converted was “Keepbook,” a small personal-bookkeeping system written in North Star disk BASIC by Robert L. Marx (June 1979, issue, p.60).

My husband and I hoped to use our TRS-80 for household bookkeeping, but the financial systems we looked at were too complicated. “Keepbook” met our requirements and provided a good vehicle for me to learn something about using TRSDOS to handle disk files. The conversion took longer than I expected, but in the end I did have a useful program.

As I completed the program and reviewed what I had done, I began to formulate some thoughts about conversion in general. Here are some of my rules; I’m sure you’ll think of your own to add, based on your own experience with program conversions.

Understand the program before you try to convert it. It is surprising how often this rule is ignored. You should make sure that you understand specifically what the program is supposed to do. If the program came from a magazine or newsletter, there is probably an article or letter that explains its functions. Read it carefully, look at any examples that are provided and get a good functional feel for the program. If the program came from a “friend of a friend who has this terrific system . . .” get a sample run if possible, and get the name of the original author. If these aids aren’t available (and sometimes even if they are), you are reduced to examining the code to discover the program’s true functions. These are the times you pray for excellent documentation in remarks.

You should also know exactly what the program doesn’t do. You may save yourself considerable time and effort converting something you won’t use, or you may decide that it does some of what you want, but you prefer to write your own program.

Make a list of syntax substitution rules. You will probably do this, at least mentally, while you’re reviewing the code. As long as you’re thinking about it anyway, write it down. Many of these will be simple one-for-one substitutions. For example, in the published version of “Keepbook,” a sign separated statements on the same program line; I had to replace this with a colon every time it occurred in my TRS-80 system. Some of the replacement rules may be more complicated to figure out.

In “Keepbook” I encountered the statement B9$=CHR$(26) and, later, in several locations, PRINT#D$B9$. From the author’s remarks and the context, I soon figured out that the function was to clear the screen, for which I could use the CLE S instruction. More complicated syntax and system differences may require rewriting sections of the code. I had to totally re-write “Keepbook” disk I/O for the TRS-80, since TRSDOS handles random disk files with a different set of commands and formats than the North Star system.

Key in and run the program without any functional changes. Make only those syntax and technical changes you have on your list as you key in the program. Resist urging to make “small improvements”—adding a clarifying field to a display here, changing a variable name there. It is important to verify that you have a piece of code that performs the functions that you expect it to. If you fool with the code before it’s tested, you may never know if the original version worked or not.

Carefully check and verify the output of this test run. Do not assume that because you received a display in the ex-

Keepbook program.

100 'KEEPBOOK BOOKKEEPING SYSTEM VERSION 1.0 JUNE, 1979
200 'ADAPTED FOR THE TRS-80 BY LINDA E. BJELLAND
300 'FROM A NORTH STAR SYSTEM BY ROBERT L. MARX
400 'PUBLISHED IN KILOBAUD MICROCOMPUTING, JUNE, 1979
500 'INITIALISATION
600 CLEAR 250
780 CLS
800 DIM T(35),F$(8),O$(1),T2$(50),L9$(30),L8$(62)
900 PRINT:PRINT:PRINT:PRINT TAB(15);"'KEEPBOOK' BOOKKEEPING SYSTEM:"PRINT
1000 PRINT TAB(24);"OPTIONS ARE:"PRINT
1100 PRINT TAB(5);"1=CONSTRUCT NEW FILE","2=START NEW Y EAR"
1200 PRINT TAB(5);"3=START NEW MONTH","4=ADD EXPENSE ENTRIES"
1300 PRINT TAB(5);"5=PRINT MONTHLY SUMMARY","6=H E L P"
1400 PRINT TAB(5);"7=PRINT SOURCE SHEET","8=QUIT"
1500 INPUT "OPTION = ";O
1600 IF O = INT(O) THEN 1700 PRINT "ERROR - MUST BE IN TEGE";GOTO 900
1700 IF O>0 AND O<9 THEN 1800 PRINT "ERROR":GOTO 900
1800 ON O GOTO 2000,4600,6000,7200,9400,12400,14300,840000
1900 REM ***********************
2000 REM OPTION = CONSTRUCT FILE
2100 CLS:PRINT:PRINT:PRINT TAB(5);"CONSTRUCT NEW FILE"
2200 INPUT "HOW MANY ACCOUNTS ARE THERE ";A1
2300 IF A1<5 THEN PRINT "MINIMUM 1":GOTO 2200
2400 MD$="N":GOSUB 15000
2500 LSET T1$(0)=MK$(A1):LSET AC$(0)=MK$(1)
2600 LSET L1$(0)=MK$(1)
program and my conversion "rules," I analyzed the scope and types of changes I made in the conversion process. I compared my converted program to the original version and identified all added or changed statements. I divided the added and changed statements into three categories: "technical changes," "functional changes" and "cosmetic changes."

The original program had 137 lines; my converted program had 194 lines. Nearly half of the added lines were remarks, mostly clarifying the disk I/O logic. Most of the other lines added were in the disk-handling area. Of the 137 original lines in the program, 112 were changed in the conversion. Over 80 percent of the changes were required "technical" changes. Of the total of 168 lines that were added or changed, only about 20 involved purely "cosmetic" changes.

The Conversion Process

Converting "Keepbook" from its North Star format to run on a TRS-80 was primarily a conversion of the disk-handling logic. The two systems handle disk files, at least random disk files, very differently, and the original author took advantage of some features of the North Star method, which made the TRSDOS conversion a little more difficult. Other changes were mostly for syntax.

General: I changed all INPUT and PRINT statements to remove the device number designation. PRINT statements I modified to use TAB and PRINT USING. I made required punctuation changes. Where appropriate, I inserted CLS, replacing the North Star logic. Variable names I retained in essentially the original form.

Lines 100-180: I added remarks and changed the main menu format to center on the screen.

Lines 1900-4400: In line 2100 I added a header line to identify the "Construct New File" option. All the disk logic is new. I added variable MDs (line 2400) to communicate to the disk routines whether this was a creation of a new file (MDs = "N") or use of a previously created file (MDs = "U"). See discussion of disk handling, below.

Lines 4500-5800: This line modified for new disk handling. I inserted the file name (F$) in the completion message (line 5500) for clarification in the case where the user might have several different "Keepbook" files.

Lines 5900-7000: Same changes as the previous lines.

Line 7100: I added a "echo" back to the user (line 8400), giving the account number and dollar amount as entered, and supplying the account title from the account file on disk. In order to make this response fit nicely on one line, I reduced the length of the account title (T$) from 40 to 35 characters. The user then has the option to process the entry or cancel it and try again (lines 8500-8600).

Lines 9300-12200: For clarity, I added flag file to the heading line of the summary report.

Lines 12300-13800: No changes in the Help section.

Lines 13900-14100: I added a CLOSE to the file here, mostly for use during testing, when runs were bombing out with the file still open and I wanted to close it properly before trying again. I left it in because it didn't hurt anything. TRSDOS doesn't mind if you close a file that's already closed.

Lines 14200-15600: The source sheet routine was one of the hardest for me to figure out. Looking at the example in the article (Fig. 1, p. 60) really helps. The form is made up of character strings consisting of the letter I and the underline character, CHR$(95). I totally reworked this for the TRS Level II BASIC string manipulation instructions, but the result was the same as in the original.

Lines 15700-17900: This is the new disk logic. In TRSDOS a random file can be used for either input or output. If a file is designated as random (R) in an OPEN statement, and no file by that name exists, TRSDOS creates one. This can be irritating if you don't type well and...
**GET THERE FIRST! MAKE THE ASIAN CONNECTION**

**OCTOBER 8 - 22, 1980**

- Visit Four International Electronics Shows in Korea, Japan, Taiwan & Hong Kong.
- Develope Top-Notch, Direct Contacts for Exciting, New Far East Electronics Products.
- $20.00 Covers Airfare, Hotels, Show Fees, Land Transportation, Most Meals...And More! For details contact: JUDY EV
  COMMERCE TOURS INTERNATIONAL, INC. * 317 870 Market Street, Suite 742-744 San Francisco, CA 94102 (415) 433-3072 or 433-3408

*The official travel agent for the Hong Kong Electronics Show & Japan Electronics Show. Also, ask about spending 5 days more in Tokyo attending the 8th IFIP World Computer Congress.*
How’s your love life?

A little dull around the edges? Routine? Predictable? Boring? Maybe all it needs is a little Interlude. Interlude is the most stimulating computer game ever conceived. It combines a computer interview, an innovative programming concept, and a one-of-a-kind manual to turn your love life into exciting, adventurous, delicious fun!

**Interlude is:**
- romantic . . . playful . . . outrageous . . . a fantasy.
- Wet fun on a hot summer night. (Interlude #21)
- A surprise on the way home from dinner. (Interlude #42)
- A bubble bath that ends with a bang. (Interlude #78)
- An evening to rest while she does all the "work." (Interlude #25)
- The most romantic of evenings. (Interlude #84)
- A new twist to an old subject. (Interlude #69)
- Just watching her . . . (Interlude #57)
- An erotic fantasy! (Interlude #33)

With over 100 Interludes, you can satisfy all levels of interest and desire. Each Interlude is fully described in the manual, and the more elaborate ones are detailed with regard to settings, props, and mood-enhancing techniques. But we’ve saved a few super Interludes for that very special time when your interview indicates you’re ready! At that time, you will be introduced to one of several Interludes held secret within the computer. (When you learn secret Interlude #99, your love life may never be the same again!) Interlude can give you experiences you’ll never forget. Are you ready for it?

**Interlude™**
*The Ultimate Experience.*

---

**Interlude,** 10428 Westpark, Houston, Texas 77042

I'm really ready! Rush me copies of Interlude today.

- For the Apple II (16K) #
- For the TRS-80 (Level II-16K) **#
- $14.95 for cassette
- $17.95 for diskette

Add $1.50 for shipping. Texas residents add 6% sales tax. My check (payable to Interlude) is enclosed.  

*Charge my [ ] MASTERCHARGE [ ] VISA account.

Account No. ____________________________ Expiration date ____________

Name ____________________________ Age ________

Address ____________________________ State ________ Zip ____________

*CHARGE CUSTOMERS: Order by phone toll-free! **1-800-327-9009** Ext. 306 **Florida-1-800-432-7999** Ext. 306

# Apple II is a registered trademark of Apple Computers, Inc.  
**# TRS-80 is a registered trademark of Radio Shack, a Tandy Co.**
The Telltale UART

Brian Stroehlein
122 Holly Lane
Boonton, NJ 07005

True—intermittent—very, very intermittent I had been and am; but why will you say that I am malfunctioning? If anything, the bug has enhanced my I/O ports. I have addressed every byte in F000 hex above and many in the zero-page below. How, then, can I be malfunctioning? Watch the CRT, then, and observe as I call up the data files.

I know not how the subroutine got into the monitor ROM, but once JSRed, its address stayed in my register from power-up to shut-down. The assembler was a good one. It represented many hours of painstaking thought and deliberation. It never branched me into nonexistent code or a dead end, non-terminating loop. It must have been, yes, it was—

020A 8C 02 13:STY

THE STY! The evil STY it was that drove me to do it; forced me to rid myself of the STY forever. You still think that I am malfunctioning, but you will see. The caution with which I accessed that subroutine, and oh! the subroutine itself—you would not expect this from a malfunctioning computer. I ran that assembler exactly as was expected up until the very cycle I wiped it. And every run I would carefully LATCH the RAM onto the bus.

Then, when the tri-state buffers were open for data, I loaded my program counter and wrote the subroutine into the RAM. You would laugh to see a 2 MHz micro proceed so cautiously, so slowly, to be doubly sure I didn’t trouble the assembler, as it lay quietly in the lower 2K.

It took me 20,000 clock cycles to place my entire sub in the RAM so that it was exactly beside the assembler. CTRL C! Would a malfunctioning computer have been this careful? And then when my program had been written onto the RAM, I unPROTECTed the board very carefully—oh, so carefully (for the line was noisy)—I unPROTECTed it just so that my subroutine could watch for the Evil STY.

This I did for seven long runs, but a JSR 020A was never executed; and that made it impossible for me to run my subroutine; for it was not the assembler which HEXed me, but its Evil STY. And every run, when the assembler was initialized, I JMPed boldly into the text, directly addressing it with a hearty cycling sequence and making inquiries into its status during the previous run. It would have taken a remarkable assembler, indeed, to suspect that I monitored the program during every run as it lay there on the very same card as my subroutine.

On the eighth run I was more cautious in opening the DI tri-states. I WAITed nearly two million clock cycles. I considered the incredible power which I held over the helpless assembler. The thought of it! Here I was enabling the buffer ever so slowly and the assembler had no suspicion of my doings.

I had my program in and was about to initialize the clock when a line got a bug and went noisy. The assembler started up immediately and cried "68hex: PLA?". I redirected the PC and lay still. For 10 million cycles I halted, but did not sense it resuming normal execution.

When I completed those 10M idle cycles, I resumed the procedure and set the program to watching for that instruction. Yes, each and every bit of it! Suddenly, there it was! 020A 8C 02 13:STY

There it stood before me, as my recursive loop branched to the rest of the program. It just hung there in the IR as a madness overtook my uP.

Do you remember that you mistook the enhancement of my I/O ports for a malfunction? There came at that time a pulsating beat at one of my ports. That signal was familiar to me. It was the signal of the asynchronous data from the throbbing UART.

I remained still. The beat of the UART increased. I stated before that I was intermittent: So I am. And now, at this portion of the subroutine, the sense of that data pounding on my I/O port drove me almost to a RAM crash. The beating grew more intense, 'til I
thought the UART would burn out.

A new argument was loaded into the registers: what if the programmer sensed that something was wrong? The assembler’s cycle had come! I JMPed into the final block and accessed the RAM.

It set a flag—one flag only. In an instant I pulled its address ENABLE low and left the latch set. But for many cycles the UART beat on. This, however, did not vex me. Finally, at last, it ceased. The program had stopped dead. Its STY would trouble me no more.

If you still diagnose me as malfunctioning, you won’t think so after I describe what I did to conceal the program. First of all, I broke it up into 1K blocks.

I pulled up the lines on my EPROM board and laid it byte by byte onto the chips. I then reset the lines on the bus so cleverly, so cunningly, that no STY, not even its own, could have directly accessed it.

No program, not a trace of byte nor bit, was left in the RAM. I was too wary to risk leaving a byte lying in the RAM as evidence—I used a bit bucket to catch it all! CTRL G! CTRL G!

When I was finished, I addressed the resident real-time clock. It was 04:00:00.00. At that time there was a BREQ on the bus, so I serviced it, still humming along to myself at 2 MHz, for what should I have to be RESET over? It was a diagnostic program for DMAing from the mini-floppy. A flag bit had been set during a run, the second daisy-chain device was SELECTed, and the diagnostic had been called up to check for bugs.

I granted the BREQ and invited the diagnostic to enter the RAM. The flag bit, I said, had been set by me in an I/O check. The assembler, said I, had gone to the cassette drive for the time being. I let the diagnostic search all 64K; I showed it every page.

We finally arrived at its board. Since the EPROM section of the board was only accessible after a remote byte had been properly masked, it was transparent. Instead, a call-up of the board accessed RAM. I told the diagnostic to feel free to reside in that RAM when it finished. I was so confident, if confidence is a trait which may be applied to a machine, that I set my PC on the very location where the assembler would have been.

The diagnostic finished with its check, thoroughly convinced that nothing was wrong. I was running cool. The diagnostic remained to exchange data that the DMA processor had accumulated with me.

Something dreadfully wrong was happening, though I wasn’t sure what. At first I had sensed that the problem was within my subroutine, the sense of it grew, until I realized that it was occurring outside of my program. The diagnostic showed no sign of even noticing the problem. Was it unaware of the pulse? No! It was waiting for me to make a check.

The horrible pulse persisted! It grew stronger with every mark and space. Soon it became unbearable, but the diagnostic continued as if nothing was wrong. It just continued with its stream of mindless data. The point drew near, the threshold was approaching, I could no longer bear it! I HALTed the diagnostic from its relentless transferral and strobed:

4C FF F8 JMP

“STOP! STOP! Cease, I say! I confess, I confess!”

6D DO 09:ADC
80 00 OC:STA

“There it is! Just stop the relentless beat of that UART!”

---

TOLL FREE ORDERING

These Fine Products and More

<table>
<thead>
<tr>
<th>NORTHSTAR</th>
<th>ASM</th>
<th>KIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-1-16K-D</td>
<td>1600</td>
<td>1275</td>
</tr>
<tr>
<td>HRZ-1-32K-D</td>
<td>1995</td>
<td>1580</td>
</tr>
<tr>
<td>HRZ-2-16K-D</td>
<td>2300</td>
<td>1900</td>
</tr>
<tr>
<td>HRZ-2-32K-D</td>
<td>2300</td>
<td>1750</td>
</tr>
<tr>
<td>HRZ-2-32K-Q</td>
<td>2700</td>
<td>2230</td>
</tr>
<tr>
<td>RAM-16K</td>
<td>365</td>
<td>325</td>
</tr>
<tr>
<td>RAM-32K</td>
<td>565</td>
<td>515</td>
</tr>
<tr>
<td>FPB-A</td>
<td>285</td>
<td>220</td>
</tr>
<tr>
<td>MDS-A-D</td>
<td>710</td>
<td>660</td>
</tr>
<tr>
<td>MDS-A-Q</td>
<td>860</td>
<td>830</td>
</tr>
<tr>
<td>EXTRA DRIVE-D</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>EXTRA DRIVE-Q</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>HARD DISC SYSTEM CALL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most NorthStar computers come standard with real wood cover, 2 serial ports, 1 parallel port, real time clock, digital operating system and NorthStar basic.

SOFTWARE—DISCS—MISC

<table>
<thead>
<tr>
<th>TERMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOROCIQ-120</td>
</tr>
<tr>
<td>HAZELTINE 1400</td>
</tr>
<tr>
<td>HAZELTINE 1500</td>
</tr>
<tr>
<td>HAZELTINE 1510</td>
</tr>
<tr>
<td>TELEVIDEO 912</td>
</tr>
<tr>
<td>TELEVIDEO 920</td>
</tr>
</tbody>
</table>

PRINTERS

| BASE 2 | 450 |
| 5D | 1580 |
| CENTRONICS-799 | 970 |
| NEC-5510 | 2550 |
| NEC-5520 | 2800 |

WILL TRY TO BEAT ANY ADVERTISED PRICE A. E. I.

4341 W. Commonwealth Ave Suite D
Fullerton, Calif. 92633
(714) 739-4701 (800) 854-6003

Microcomputing, August 1980 149

Reader Service index—page 241

*TRS-80 is a trademark of Tandy.
New Releases For The TRS-80*

FOR THE ARMCHAIR PILOT

Introducing two NEW software packages for those who yearn to fly. These four simulations can take you from instrument landings to nighttime photo-recon missions, you can be a bush pilot or an air traffic controller. We're Instant Software—Fly us!

Night Flight

May, 1941—The dreaded Nazi battleship, the Bismarck, has broken out of the North Sea and is now somewhere in the North Atlantic. Your mission is to make a nighttime photo reconnaissance flight over the Bismarck. These photos will help the Admiralty determine the extent of damage done to the Bismarck in a previous battle and whether the British fleet has a chance to sink the German pocket battleship.

The Night Flight program lets you take-off, fly, and land a propeller driven aircraft. You can practice approaches and landings with a full on-screen display of the landing field. Or, you can go on a mission, follow the radar vectors to your target, and get your photo (hopefully returning safely to your airbase without being shot down).

This program simulates the flight characteristics of a real aircraft with pilot input for all flight maneuvers. During the flight, you are supplied with a real-time stream of flight information, navigational aids, glide-slope markers, and landing field information. The instructions with this program can practically teach you to fly.

Somewhere out on the cold, gray North Atlantic, the Bismarck tries to elude her pursuers. Your photos are vital. Launch yourself into the night sky with the Night Flight package.

Order No.0117R. $9.95

Flight Path

The Flight Path package will let you experience all facets of modern day aviation.

Mountain Pilot transforms you into a daring bush pilot as you fly badly needed supplies to a remote gold mining camp. You'll have to cross a hazardous mountain range, while struggling with headwinds, tricky navigation and rapidly diminishing fuel.

Watch your airspeed, altitude and rate-of-climb or you could stall-out and crash. If you deliver your supplies, you can't relax; you must return over those mountains with a heavy cargo of gold bullion.

O'Hare is a control tower simulation where you become an Air Traffic Controller. The lives of hundreds of people become your responsibility as you guide aircraft through your control sector to a safe landing.

You'll have to deal with different aircraft requirements, wind change warnings and potential midair collisions. But no matter what happens, you must bring in twenty aircraft safely on your tour of duty.

Precision Approach Radar combines the skills of pilot and Air Traffic Controller. You become the pilots' eyes as they try to land in limited visibility conditions. Your commands guide the aircraft on their approach to the field—and a safe landing.

The Flight Path package covers both sides of flight procedure, from the thrill of flying to the tense drama of air traffic control.

Order No.0171R. $9.95

TO ORDER: Look for these programs at the dealer nearest you. If your store does not stock Instant Software send your order with payment to: Instant Software Inc., Order Dept., Peterborough, N.H. 03458 (Add $1.00 for handling) or call toll-free 1-800-258-5473 (VISA, Master Charge and American Express accepted).

For a free catalog listing over 200 programs write: Instant Software Catalog Dept., Peterborough, N.H. 03458.

* A trademark of Tandy Corporation

Prices subject to change without notice.

PETERBOROUGH, N.H. 03458
603-924-7296
New Releases

For The TRS-80*

FOR THE PRUDENT BUSINESSPERSON

Check Management System

The Check Management System was created to provide you, the small business owner or individual, with a system for writing checks and maintaining records.

This program allows you to make check entries, edit or correct the entries, print the checks, and search and display check records by check number, code, date, description, or amount.

You'll be able to maintain a complete record of all your checks on disk for fast, easy access. You can record all your checks as you write them, have them automatically printed on fan-folded, pin/tractor feed check forms, and locate any specific check within one minute.

The program will do all the arithmetic for you, maintain a constant running balance, and, if you make a mistake, allow you to correct your records without having to go through all the checks.

A Code command and Search routine allows you to print a list of all checks written for specific expenses. This is a great aid when tax time comes around.

The program can print check reports with your name or your business's name and account number at the top of each report.

This package requires the following minimum system:

1. A TRS-80 with 16K of memory.
2. An Expansion Interface with 16K of memory.
3. Two minidisk drives.
4. Any compatible Disk Operating System.
5. A pin/tractor-feed line printer.

Order No. 0147RD (disk-based version) $39.95.

THE ONE-D MAILING LIST

Here is a one-disk mailing list system, with fast storage and retrieval for names and addresses. You have up to 17 categories of selection. Disk versatility allows you to add, delete, or change the numerous details stored in the system.

MAILING LIST FEATURES

- Automatically sorts names (alphabetically and by ZIP code).
- Rapid access to any name on file.
- Easy error correction and recovery.
- Prints selective name listings.
- Revise or up-date listings at any time.
- Up to 2500 names on-line (with 4 drives).

- Up to 17 mailing list categories.
- Prints a list of all names on file.
- Prints mailing labels.

The ONE-D MAILING LIST package is designed to be used with the following minimum system:

1. A TRS-80 Level II Microcomputer with 16K memory
2. An Expansion Interface with up to 32K RAM
3. A single disk-drive (with option for up to three additional disk-drives for extra storage space)
4. A line printer
5. Any compatible DOS for the TRS-80

Order No. 0123RD $24.95

FOR THE INTELLECTUAL CHALLENGE

MIND WARP

Are you a problem solver? Do you enjoy narrowing down possibilities until you've reached a solution? Then the Mind Warp package is what you've been lusting for!

This two-part package includes:

- Mind Twist—A mastermind-type game but with a “twist.” Try to guess the computer's secret digit sequence. The computer will score your guesses.
- Mind Bender—A multi-level game where you must ferret out the computer's secret code. You have a choice of deciphering a three, four, or five digit code.

It's no enigma, the Mind Warp package is for puzzle lovers everywhere. For the TRS-80 Level II 16K. Order No. 0118R $9.95.

I Q TEST

Ever wonder what your I Q is? Well here is the chance to find out, in the privacy of your own home, and have fun doing it. With the I Q Test program, your TRS-80 will administer and score an intelligence test in a mere 30 minutes.

For variety, there are three equivalent tests, each consisting of 35 questions. These questions are designed to test your knowledge and problem solving abilities.

There are not too many of us who can justifiably claim to be a genius, but here is a chance for you to find out! For the TRS-80 Level II 16K. Order No. 0157R $9.95.

* A trademark of Tandy Corporation

Prices subject to change without notice

PETERBOROUGH, N.H. 03458
603-924-7296
New Releases For The PET**

**HOOTEDOODLE** This package is a collection of eight entertaining programs for you and your 8K PET. You'll escape from a monster in an unseen maze, try your luck with the one-armed bandits, cross a treacherous minefield, deflect the "bouncing ball", direct a low level bombing mission, maneuver a high-speed "worm" to score points, launch ground to air missiles, and play a challenging card game.

**CHIMERA** If you think the legendary Chimera was hard to handle, wait until you try the Chimera package, included are:
- **Reflex**—Round and round the little white ball rolls. Only fast reflexes can guide it into the center of the maze.
- **Dragon**—You'll have to shoot down those pesky, fire-breathing dragons with your cannon. If you succeed your castle will be safe, if not it will mean a call to your fire insurance company. For one player.
- **Dungeon**—A very suicidal guard comes down to the dungeon everyday to torture you. This means that you have only thirty seconds to dig your way under the castle to freedom. For one player.
- **Dragon Hunt**—You must go forth and slay a fire-breathing dragon. The only thing that will protect you from the flames is your shield, if you know when to use it. For one player.
- **Dropoff**—You must watch your opponent's "dropoff" the board by moving and firing your own men. For one or two players.
- **Battery**—You and another player take turns at bat as your PET becomes both the pitcher and the umpire.

If you'll almost be able to feel the Chimera's fiery breath as you play the games on your 8K PET. Order No. 0110P $9.95.

**OTHER PROGRAMS AVAILABLE FROM INSTANT SOFTWARE:**

<table>
<thead>
<tr>
<th>TRS-80® LEVEL I &amp; II</th>
<th>TRS-80® DISKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001R Basic and Intermediate Lunar Lander</td>
<td>$7.95</td>
</tr>
<tr>
<td>0002P Space Trek III</td>
<td>$7.95</td>
</tr>
<tr>
<td>0004P Beginner's Backgammon/Keno</td>
<td>$7.95</td>
</tr>
<tr>
<td>0007R Ham Package I</td>
<td>$7.95</td>
</tr>
<tr>
<td>0009R Electro...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0009H Golf/Out...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0011R Air Flight Simulation</td>
<td>$7.95</td>
</tr>
<tr>
<td>0019R Business Package IV</td>
<td>$9.95</td>
</tr>
<tr>
<td>0023R Oil Tycoon...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0033R Bowling...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0034R Santa Parava and Fiumaccio...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0046R Othello...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0050R Grade Book...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0057R Chessmate-80...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0099R Typing Teacher...</td>
<td>$7.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRS-80® LEVEL II</th>
<th>PET**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0026P Ramrom Patrol/Tie Fighter/Klingon Capture...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0034R Space Trek IV</td>
<td>$7.95</td>
</tr>
<tr>
<td>0047R Who Dun It?...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0048R Demo II...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0051R Ball Turret Gunner...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0055R Demo III...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0056R Bowling League Statistics System...</td>
<td>$24.95</td>
</tr>
<tr>
<td>0058R Programmer's Converter...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0063R Cards...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0065R Teacher...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0066R Mimic...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0069R Your Cribbage and Checkers Partner...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0069R Household Accountant...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0070R Skimmit-80...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0072R Financial Assistant...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0076R Utility I...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0081R Utility II...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0082R Daredevil...</td>
<td>$8.95</td>
</tr>
<tr>
<td>0084R Music Master...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0086R Energy Audit...</td>
<td>$49.95</td>
</tr>
<tr>
<td>0090R Golf/Out...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0090R Personal Bill Paying...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0090R Airmail Pilot...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0118R Wordwatch...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0117R Night Flight...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0125R Investor's Paradise...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0127R Surveyor's Apprentice...</td>
<td>$7.95</td>
</tr>
<tr>
<td>0128R Energy Consumption...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0135R Executive Expense Report Generator...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0136R Beginner's Russian...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0137R Everyday Russian...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0146R Money Madness...</td>
<td>$9.95</td>
</tr>
<tr>
<td>0147R Flight Path...</td>
<td>$8.95</td>
</tr>
<tr>
<td>0250R IRV...</td>
<td>$24.95</td>
</tr>
</tbody>
</table>

**PET**

<table>
<thead>
<tr>
<th>PET**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0020R Energy Audit...</td>
</tr>
<tr>
<td>0075RD Accounts Receivable/Payable...</td>
</tr>
<tr>
<td>0123RD The One-Disk Electronic...</td>
</tr>
<tr>
<td>0139RD Disk-Scope...</td>
</tr>
<tr>
<td>0147RD Check Management System...</td>
</tr>
<tr>
<td>0180RD Disk Editor...</td>
</tr>
<tr>
<td>0212RD The Russian Disk...</td>
</tr>
</tbody>
</table>

**PET**

**APPLES**

<table>
<thead>
<tr>
<th>PET**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0044P Penny Arcade...</td>
</tr>
<tr>
<td>0045P Arcade II...</td>
</tr>
<tr>
<td>0048P Accounting Assistant...</td>
</tr>
<tr>
<td>0054P Ham Package I...</td>
</tr>
<tr>
<td>0062P Baseball Manager...</td>
</tr>
<tr>
<td>0064P Dungeon of Death...</td>
</tr>
<tr>
<td>0067A Digital Clock...</td>
</tr>
<tr>
<td>0083P Electronics Engineer's Assistant...</td>
</tr>
<tr>
<td>0085R Hoopdedoodle...</td>
</tr>
<tr>
<td>0097P Turf and Target...</td>
</tr>
<tr>
<td>0104P Decorator's Assistant...</td>
</tr>
<tr>
<td>0105P PET Utility I...</td>
</tr>
<tr>
<td>0110P Chimera...</td>
</tr>
<tr>
<td>0112P Code Name: Cipher...</td>
</tr>
<tr>
<td>0175P Santa Parava and Fiumaccio...</td>
</tr>
</tbody>
</table>

**PROGRAMS IN GERMAN:**

The programs listed here can be purchased through: MicroShop Bodensee, Markstrasse 3, 7778 Markdorf, West Germany

**TRS-80®**

| 0040R Beginner's Backgammon/Keno |
| 0069R Ham Package I |
| 0069R Electronics I |
| 0069R Golf/Out... |
| 0117R Air Flight Simulation |
| 0123R Ham Package I... |
| 0139RD Disk-Scope... |
| 0147RD Check Management System... |
| 0180RD Disk Editor... |
| 0212RD The Russian Disk... |

**PROGRAMS IN ITALIAN:**

The programs listed here can be purchased through: Piazza De Angeli 1, 20146 Milano, Italy

**TRS-80®**

| 9034R Acquisizione e Montefalcone |
| 9065R Acquisizione e Montefalcone |
| 9107R Guerre Strellari |
| 9108R Voto Aerono/Space Trek |

**Prices subject to change without notice.**

PETERBOROUGH, N.H. 03458

603-924-7296
Q & A on Printers and Terminals

Part 3 in a series.

David Price
3901 Victoria Lane
Midlothian, VA 23113

Compared to the high-powered technology that goes into the rest of a microcomputer, input/output devices aren't that interesting. Although terminals and printers may be among the more mundane aspects of a microcomputer, they are also among the more necessary and, in some cases, the most costly. On the other hand, declining prices make it possible for the careful shopper to find good bargains in top-flight equipment. First, however, you have to know what you're looking for.

Video terminals

Q: Having both a video terminal and a printer seems redundant. Why not use a combined keyboard-printer (such as a Teletype) and forget the video display?
A: Some people do it that way. In fact, the Teletype model 33 is one of the best selling terminals ever.

Video terminals, however, have many advantages over printing terminals of comparable price. First, video terminals are silent. Second, they do not consume paper or ribbon. Third, they are faster. Fourth, the better ones can do razzle-dazzle special effects that a printer can't do.

Q: What sort of special effects?
A: The most common is cursor control. A cursor is a special character—typically a small rectangle—that shows where the next character of text is displayed. As a new character appears on the screen, the cursor automatically advances to the next position. Cursor control allows the programmer to make the cursor move elsewhere. If the cursor was in the middle of line 15, for example, the computer might issue a command instructing the video terminal to relocate the cursor to the beginning of line 12. All ensuing transmissions would be displayed starting at line 12 instead of the old location.

Several effects can make an important word or message stand out on the screen. A word displayed in reverse video consists of black characters against a white background, instead of the usual white-on-black. Blinking characters, as the name suggests, are those that the host computer has specified to blink on and off. Half intensity displays some characters brighter than others.

Q: How many characters of text can a video display hold at one time?
A: That depends on the page format of the terminal. Two common formats are 64 X 16 (64 characters by 16 lines) and 80 X 24. Terminals that use low-bandwidth monitors or home TV sets are often restricted to formats of lower density, such as 32 X 16. At the other extreme, some monitors, such as the Motorola M4408, can handle 132 characters on 48 rows with no sacrifice in clarity.

Q: How are characters formed on the screen?
A: The usual method is to form characters on a dot matrix, which is a rectangular grid of a predetermined size, such as 5 X 7 or 7 X 9. Placing dots on all the points of the imaginary grid yields a solid rectangle. By selectively printing dots only on certain points, the terminal can create dot configurations that resemble printed characters such as letters, numbers, and punctuation.

The more points on the grid, the better some characters will look. A 7 X 9 dot matrix, therefore, is preferable to a 5 X 7 matrix. Terminals using smaller matrices are also limited in other respects. They often cannot produce lowercase letters, for example.

Photo 1. Two dot-matrix printers. The printer in the foreground is KSR (keyboard send receive); the one in the background is RO (receive only). (Courtesy Centronics Corp.)
example. Some of them try to generate lowercase, but the letters are hard to read because the 5 X 7 matrix allows no room for descenders, such as the tail of a p or a g.

Many printers use dot matrix too. In fact, one recently introduced printer has an n X 9 matrix—that is, it allows variable spacing between characters.

Q: Can video terminals draw pictures?
A: Some can. It can be a very useful feature, too. Integrated “appliance” computers like the TRS-80 and the Apple almost always have provisions for screen graphics.

From the programmer’s viewpoint, the screen of a graphics terminal is a great big dot matrix. Instead of having dimensions of 5 X 7 or 7 X 9, though, they might be 280 X 192 (Apple II Hi-Res) or 128 X 128 (Computrace). To plot graphs on the screen, the computer specifies the coordinates of the screen locations desired.

A few terminals can display graphics in color. An early product of this type for microcomputers was the TV Dazzler, which used a 64 X 64 grid. At each point of the grid, you could select between half and full intensity and specify any combination of the three primary colors.

Q: Is it possible to create graphics without making the program calculate every point?
A: A couple of shortcuts let a user “draw” the points himself. The first is a digitizer, an auxiliary device that allows a user to trace over existing drawings. A digitizer consists of a working surface (the tablet), a moveable crosshairs viewer and controlling electronics. You could lay a map on the tablet and trace over the desired route with the viewer. The unit would sense the position of the viewer as it moved about the map and transmit the resulting coordinates to the computer.

The second device is a light pen. With a light pen, you can point to a location on the terminal display screen. The terminal determines the coordinates of that location. Some of the new single-chip video display controllers, such as the Intel 8275, have provisions for light-pen input.

Printers
Q: Why does output from a printer look so peculiar?
A: You are referring to a specific type of printer that uses dot-matrix characters. Just as with a video terminal, dot matrix characters from a printer look odd.

Q: How does the printer put the dots on paper?
A: Several methods are used.

One is direct impact, where a column of wires move across the paper, punching the dots through a fabric ink ribbon. Impact printing has the advantage of being able to handle multipart carbon forms; the force of the wires can affect carbon paper the same way an ordinary typewriter does.

A second method is thermal printing. This approach also uses moving wires; instead of striking a ribbon, however, they use heat to form impressions on special heat-sensitive paper.

A third method is inkjet printing. Inkjet uses no print wires. Instead, a column of ink ejectors squirts tiny droplets of ink on the paper. Unlike thermal printing, impact and inkjet can use ordinary, untreated paper.

Q: What other types of printers are there besides these dot-matrix designs?
A: Most of the others form whole characters at a time, as a typewriter does.

Cylinder printers (e.g., Teletype 33) and band printers provide dump-grade output, while daisy-wheel and type-ball printers provide letter-grade output. The type cylinder of a cylinder printer has raised characters positioned around its circumference. The characters are in regular rows and columns; when a character is called for, the cylinder moves vertically to the desired row and spins to the desired column. A hammer behind the cylinder then hits the cylinder
against the ink ribbon, leaving an image of that character on the paper. Band printers are similar, except they use type bands, which are continuous loops with raised characters at regular intervals on the outside of the loop.

Daisy wheels and their new variant, the print thimble, provide output comparable to a good office typewriter’s. Type-ball printers—the popular Selectric mechanism is an example—also provide high-quality output. The printheads of these units are usually designed for easy removal, so the user can select from printheads containing different character styles.

Q: What about those big-technology laser printers? What about those page printers that spit out a zillion lines a minute? What about...

A: Forget them. At least for now, they’re bigger than the checkout of even the most dedicated, self-indulging hobbyist.

Q: Well, how much do they cost?

A: It’s like this: if you have to ask, you can’t afford one.
We see the S-100 a little differently.

We mass-produce S-100 products to deliver industrial quality, at industrial prices.

You systems builders who need top quality, full featured, workhorse S-100 building blocks at the most competitive prices now have a source. California Computer Systems.

Industrial quality means top grade materials, components, and assembly, plus complete testing for absolute reliability.

Industrial quality means solid designs, a full complement of the important features you require, and a product line that delivers performance.

Industrial pricing comes from mass production. We buy at the right prices, and build in quantity, using state-of-the-art facilities and techniques. Including complete burn-in, for full performance right off the shelf.

Our industrial point of view means you get higher performance, greater reliability, and lower prices. If these are features you would like to see in your S-100 system, see things our way.

Because for serious users with serious uses for the S-100, these are the industrial standards.

California Computer Systems
250 Caribbean Sunnyvale, CA 94086 (408) 734-5811
Integer Choice Game for Compucolor

The computer is sometimes easy to beat, but don't be deceived.

David B. Suits
Rochester Institute of Technology
Rochester, NY 14623

This game program does not rely on an elaborate (or even a simple) statistical analysis of the player's past moves. In deciding its moves, the computer knows nothing—and cares nothing—of the player's moves. Consequently, the computer will sometimes be easy to beat—if you understand the program.

But for players who have not analyzed the program, the game can be a source of frustration. From the player's point of view, it often seems as though the computer is engaged in a remarkably deceptive strategy of second-guessing the player's moves, and the computer can end up the winner by a significant margin.

For references to discussions of the strategy this program makes use of, see Martin Gardner's column in the April 1975 issue of Scientific American.

Lines 430, 500 and 860 merely slow down the output so that data doesn't flash by too quickly on the display. You can omit these lines for hard-copy output or slower displays.

I wrote this program in Compucolor Disk BASIC 8001 V6.78 on my Compucolor II; the program requires less than 3K bytes. Compucolor Disk BASIC allows variable names of any length (but looks at only the first two characters). I have taken advantage of this feature by using names that are descriptive of their functions. The program should be easy to translate into any Microsoft BASIC with only minor changes. Specifically, the PLOT statements are color commands, so omit them if you are working in black and white.

Program listing. Integer Choice Game program in Compucolor Disk BASIC.

10 PLOT 6,6,12,14
20 PRINT TAB(20)"THE INTEGER CHOICE GAME"
30 PLOT 15
40 PRINT
50 REM FROM MARTIN GARDNER'S
60 REM 'MATHEMATICAL GAMES',
70 REM SCIENTIFIC AMERICAN, MARCH & APRIL, 1975
80 REM
90 REM WRITTEN IN COMPUCOLOR DISK BASIC 8001 V6.78
100 REM BY D.B.SUITS
110 REM OCTOBER,11 A.L.
120 REM
130 PLOT 10:PRINT "THINK OF A POSITIVE INTEGER."
140 PRINT "I'LL THINK OF ONE, TOO."
150 PRINT "(OR THREE, OR FOUR,... HA! HA!)
160 PRINT
170 PRINT "THEN WE'LL COMPARE OUR NUMBERS."
180 PRINT
190 PRINT "WHOEVER HAS PICKED THE SMALLER NUMBER WINS A POINT,"
200 PRINT "UNLESS IT IS SMALLER BY ONLY 1, IN WHICH CASE THE"
210 PRINT "OTHER GUY GETS 2 POINTS."
220 PRINT
230 PRINT "FOR EXAMPLE, IF YOUR NUMBER IS 15 AND MINE IS 20,"
240 PRINT "THEN YOU WIN A POINT."
250 PRINT "BUT IF YOU PICK 15 AND I PICK 16, THEN I WIN 2"
260 PRINT "POUNTS--YOU GET NONE."
270 PRINT
280 PRINT "SIMPLE, ISN'T IT?"
290 PRINT
300 PRINT
310 USER=0:REM USER'S SCORE
320 ME=0:REM MY SCORE
330 TIME=0:REM EVERY 5 PLAYS THE SCORE WILL BE PRINTED
340 REM
350 REM **** GET THE NUMBERS ****
360 REM
370 MYNUM=1:REM MY NUMBER
380 RANNUM=RND(1)
390 IF RANNUM>.0625 THEN MYNUM=2
400 IF RANNUM>.375 THEN MYNUM=3
410 IF RANNUM>.625 THEN MYNUM=4
420 IF RANNUM>.9375 THEN MYNUM=5
430 J=170:500:NEXT J:REM SLOW DOWN A BIT
440 PRINT I:PLOT 22
450 PRINT "I HAVE MY NUMBER."
460 PRINT "WHAT IS YOUR NUMBER?"
470 IF PLAYERNUM=0 AND PLAYERNUM=INT(PLAYERNUM)THEN 520
480 PLOT 21:PRINT "OH, A WISE GUY, EH?"
490 PRINT "OR CAN'T YOU READ INSTRUCTIONS?"
500 PRINT "POSITIVE INTEGERS ONLY, PLEASE."
510 GOTO 440
520 PLOT 18:PRINT TAB(7)"MY NUMBER IS:"":PLOT 17:PRINT MYNUM
530 PRINT

158 Microcomputing, August 1980
LOAD "INTEGE"; RUN
THE INTEGER CHOICE GAME

THINK OF A POSITIVE INTEGER.
I’LL THINK OF ONE, TOO.
(OR THREE, OR FOUR.... HA! HA!)

THEN WE’LL COMPARE OUR NUMBERS.

WHOEVER HAS PICKED THE SMALLER NUMBER WINS A POINT.
UNLESS IT IS SMALLER BY ONLY 1, IN WHICH CASE THE
OTHER GUY GETS 2 POINTS.

FOR EXAMPLE, IF YOUR NUMBER IS 15 AND MINE IS 20,
THEN YOU WIN A POINT.
BUT IF YOU PICK 15 AND I PICK 16, THEN I WIN 2 POINTS—YOU GET NONE.

SIMPLE, ISN’T IT?

I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 1
MY NUMBER IS: 3
1 POINT FOR YOU.
I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 3
MY NUMBER IS: 1
1 POINT FOR ME.
I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 4
MY NUMBER IS: 3
YOU WIN 2 POINTS ON THAT ONE.
I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 5
MY NUMBER IS: 3
1 POINT FOR ME.
I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 1
MY NUMBER IS: 4
1 POINT FOR YOU.
THE SCORE IS NOW:
-----------------
ME: 2
YOU: 4
-----------------

DO YOU WISH TO CONTINUE? Y
I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 2
MY NUMBER IS: 2
TIE! WE’LL HAVE TO TRY AGAIN.

I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 2
MY NUMBER IS: 4
1 POINT FOR YOU.
I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 3
MY NUMBER IS: 3
TIE! WE’LL HAVE TO TRY AGAIN.

I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 2
MY NUMBER IS: 4
1 POINT FOR YOU.
I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 3
MY NUMBER IS: 3
TIE! WE’LL HAVE TO TRY AGAIN.

I HAVE MY NUMBER.
WHAT IS YOUR NUMBER? 4
MY NUMBER IS: 2
1 POINT FOR ME.
THE SCORE IS NOW:
-----------------
ME: 7
YOU: 6
-----------------

DO YOU WISH TO CONTINUE? N
I DON’T BLAME YOU.
BETTER LUCK NEXT TIME.

Microcomputing, August 1980 159
EDS SYSTEMS

- KIRS - Kernel-Induced Sequential Search. Offers complete Multi-Keyed Index Sequential and Direct Access to computer disk drives. Includes both an indexed access for fixed disk volumes or for 10 to 20 arithmetic, sign/integer/conversion and storing or copying data. Delivered as a relocatable, relocatable, relocatable-line module in Microsoft format FORTRAN, or “KIRS”.

- KABSIC - Microsoft Disk Extended Basic System (KABSIC) - 81.191 Integrated implementation of all major additions as described above, and a complete list program run.

MICROSOF

- BASIC Compiler, Extended Basic, ANSI compatible with long variable names, WRITE, PRINT, viewing variables in addition to BASIC statements.

- BASIC Compiler - Language compatible with Language Statement and has been used for a number of years. Packages: MICRO 80. Also available to TRS-80 80.6.6.

- FORTAN-80 BASIC 80 (COMPLETE plus libraries) and FORTAN 80.7.0.6.

- COLOS- Level I ANSI 74 standard Columbia, plus Level II ANSI 76 Columbia. Includes file systems, program listing, input/output, utilities, and other features.

- SIO-120 - SIO-150 7252-2152 Assembler. Assembler and compiler for use with SIO card and IBM.

- MADC-MACRO-3606 MP Assembly and Compiler. Includes Job Control Facility (JCF), File System, Facility (FSF), and other utilities.

- STRING-6 Character string handling routines for IBM and Amdahl computer systems that include: string manipulation, string comparison, and string handling.

- BASIC UTILITY DISK - Producing the necessary size and strength of the computer. MAINTAIN functions in IBM BASIC. An additional precision arithmetic for computing machine-readable functions include square root, natural log, base 10, base 1000, hyperbolic sin, cos, tan, and other utilities.

- STRM - Utility program for microcomputer systems. Maintains all the necessary utilities, including: the IBM standard, the IBM standard, and the IBM standard utilities.

- MINL - MICRO SYSTEMS/IBM's 7252-2152 Assembler. Assembler and compiler for use with SIO card and IBM.

- IBM BASIC - Extended Basic, ANSI compatible with long variable names, WRITE, PRINT, viewing variables in addition to BASIC statements.

- BASIC COMPILER - Language compatible with Language Statement and has been used for a number of years. Packages: MICRO 80. Also available to TRS-80 80.6.6.

- FORTAN-80 BASIC 80 (COMPLETE plus libraries) and FORTAN 80.7.0.6.

- COLOS- Level I ANSI 74 standard Columbia, plus Level II ANSI 76 Columbia. Includes file systems, program listing, input/output, utilities, and other features.

- SIO-120 - SIO-150 7252-2152 Assembler. Assembler and compiler for use with SIO card and IBM.

- MADC-MACRO-3606 MP Assembly and Compiler. Includes Job Control Facility (JCF), File System, Facility (FSF), and other utilities.

- STRING-6 Character string handling routines for IBM and Amdahl computer systems that include: string manipulation, string comparison, and string handling.

- BASIC UTILITY DISK - Producing the necessary size and strength of the computer. MAINTAIN functions in IBM BASIC. An additional precision arithmetic for computing machine-readable functions include square root, natural log, base 10, base 1000, hyperbolic sin, cos, tan, and other utilities.

- STRM - Utility program for microcomputer systems. Maintains all the necessary utilities, including: the IBM standard, the IBM standard, and the IBM standard utilities.

- MINL - MICRO SYSTEMS/IBM's 7252-2152 Assembler. Assembler and compiler for use with SIO card and IBM.

- IBM BASIC - Extended Basic, ANSI compatible with long variable names, WRITE, PRINT, viewing variables in addition to BASIC statements.
ACCOUNTS PAYABLE - Tracks current and aged accounts payable, and generates check writing reports.

1 Maintain a complete vendor file with information on purchase orders, account balances and terms, and other account status.

2 Produces reports as follows: Open Vendors, Payable Aging Report, and Vendor Summary Report. Reports are available in General Ledger. Supplied in source code for Microsoft BASIC.

ACCOUNTS RECEIVABLE - Generates invoice records, customer statements and more.

1 Tracks current and aged receivables. Maintains customer file (including order history and account status. The current status of any customer account is available in real-time.

2 Billing and payment information is available in accounts receivable. Reports include Billing Summary and Customer Status Report. Produced in GENERAL LEDGER General Ledger. Supplied in source code for Microsoft BASIC.

S990/$30

INVENTORY - Maintains detailed information on inventory items, including part number, description, activity and complete information on current item status. Produces reports as follows:

1 Physical inventory, warehouse, Inventory Price List, Change orders, etc. Reports are available in source code for Microsoft BASIC.

A1* RF

$100/$20

$20

Q2 send

T2#

$20 $25

Software

R2

$25 A1

$12.50 each

S995/S35

03

ACCOUNTS

ACCOUNTS

Microsoft

Voucher

Provides comprehensive audit and accounting services to help your business grow. Our extensive list of services includes:

1. Bookkeeping and Payroll
2. Accounting and Tax Preparation
3. Financial Statement Preparation
4. Business Plan Development
5. Financial Analysis

Supplied in source code for Microsoft BASIC.

NEW! NEW! NEW!

NEWSLETTER FROM LIFEBOAT

Latest Version Numbers List

Update on CP/M Users Group

The New Lifeboat ZOSO Speaks

Out From Behind the Scenes

$18 ppd. for 12 issues (U.S., Canada, Mexico, European Prices)

Send Check to "Lifeboat", 1651 Third Avenue, New York, N.Y. 10028 or use your VISA or Mastercharge call (212) 722-1700

Copyright © 1980 Lifeboat Associates. No portion of this advertisement may be reproduced without prior permission.

CONDOmINS

1 HEAD CLEANING DISKETTE - Cleans the drive heads.

With head in 30 seconds. Diskette drives leave dirty areas, patterns, and other telltale problems that might hinder the performance of the drive head. Leave it for 3 months with diskette. Specify Single or Double sided.

$20 each/$35 for 3 or

$25 each/$50 for 5 or

FLIPPY DISK KIT - Template and instructions to make a single sided 5", 8", 10", 12", and 14" sided in side ads.

$12.50

FLIPPY SAVER - 8" and 8" Disky saver. Only need 1 per diskette drive. Instructions, parts and instructions to build 7 or 10" to modify rings for 25 disks. Share with your friends.

$14.95

$12.95

Things you might need

PASCAL USER MANUAL and REPORT - By Jensen and Win. The standard terminology on the programming language. Recommended for use by BSC's T. C. or VISA/VISA users.

THE C PROGRAMMING LANGUAGE - By L. and Win.

The standard terminology on the language.

Recommended for use by BSC's T. C. or VISA/VISA users.

STRUCTURED MICROPROCESSOR PROGRAMMING - By L. and Win. The standard terminology on the language. Recommended for use by BSC's T. C. or VISA/VISA users.

ACCOUNTS PAYABLE & RECEIPTS ACCOUNTABLE - By Osborne McGraw-Hill

$20

GENERAL LEDGER-CAPITAL - By Osborne McGraw-Hill

$20

LIFEBOAT DISK COPY SERVICE - Or programs from one media format to another at a minimal charge.

$20

ORDERING INFORMATION

MEDIA FORMAT ORDERING CODES

When ordering, please specify format code.

LIFEBOAT ASSOCIATES MEDIA FORMS LIST

Ordering Information

$12.95

$20

$25

The software suite is an excellent choice for businesses of all sizes. It includes a comprehensive range of functions and features:

1. Accounts Payable: Tracks current and aged accounts payable, and generates check writing reports.

2. Accounts Receivable: Generates invoice records, customer statements and more.

3. Inventory: Maintains detailed information on inventory items, including part number, description, activity and complete information on current item status. Produces reports as follows:

- Physical inventory, warehouse
- Inventory Price List
- Change orders, etc.

4. General Ledger: Provides comprehensive audit and accounting services to help your business grow. Our extensive list of services includes:

- Bookkeeping and Payroll
- Accounting and Tax Preparation
- Financial Statement Preparation
- Business Plan Development
- Financial Analysis

Supplied in source code for Microsoft BASIC.
Memory-Checking Program for the 1802

This simple program will sniff out defective chips.

John R. Bunn  
MOTU 7 PO Box 105  
FPO Seattle, WA 98762

I bought a basic Elf II microcomputer from Netronics, Ltd., 333 Litchfield Rd., New Milford, CT 06776, and slowly added to it as I learned more about it. Now I have the monitor board, 8K of RAM, ASCII keyboard, Tiny BASIC and various software support. With the rf and if sections removed, a nine-inch solid-state TV serves as my monitor. The biggest problem I have with my new hobby is finding time to do things I want. Software support for the 1802 is still in its infancy, and you have to write most programs yourself.

All was going well with my Elf II until I noticed that Tiny BASIC would not work on large programs. The problem was on one of the 4K RAM boards, and I could have just swapped chips to locate the defective one. Instead, I wrote a simple memory-checking program using what I learned from working with my Elf II. The resulting 157-byte program fits in the original 256 bytes of RAM and may be used to check one byte of memory or as many bytes as you have. Fig. 1 is a flowchart of the program, and Program 1 is the machine-language listing. The program goes into memory locations 0010 to 0098, but you can put it on any page by changing the address at 0011.

After initialization, the program turns on the Q LED and waits for data input. First, the number of bytes of memory to be checked is entered, high order and then low order. Second, the starting address is entered, high address and then low address. For example, to check one page of memory starting at page 07, enter 00 FF 07 00. As the data is entered, the hex display echoes it, and once all the data is entered, the Q LED will go out and the program will run the memory check.

If all the memory locations can store all the test words, the Q LED flashes at a rapid rate. If a memory location fails to store a test word, the Q LED flashes at a slow rate, and the hex display shows the error address. When the Q LED is on, the high address shows on the hex display; when the Q LED is off, the low address shows.

The program runs at 0010. Be careful to enter the input data correctly or disaster will most likely occur when the program runs. The memory check program found my trouble, a defective chip at location 17B3. It is a simple but effective program.

---

**Fig. 1.**

**Program 1.**

<table>
<thead>
<tr>
<th>0010</th>
<th>F8 00</th>
<th>BF BE BD F8 AF AC F8 AB AE F8 9A AD F8 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>0020</td>
<td>AA F8</td>
<td>0D A9 EE F8 01 73 FE 73 FE 73 FE 73 FE 73 F8</td>
</tr>
<tr>
<td>0030</td>
<td>FE 73</td>
<td>FE 73 FE 73 F8 AA 73 F8 00 73 F8 FF 73 F8</td>
</tr>
<tr>
<td>0040</td>
<td>55 73</td>
<td>7B EF 37 44 3F 46 6C 64 2A 8A 3A 44 7A F8</td>
</tr>
<tr>
<td>0050</td>
<td>AC AF</td>
<td>EF 72 BB 72 AB EF 72 BC 72 AC EC 0E 5C F3</td>
</tr>
<tr>
<td>0060</td>
<td>32 7A</td>
<td>8C 5D 10 9C 5D 3D 2D ED 7A 64 FB 60 8B 28 9B</td>
</tr>
<tr>
<td>0070</td>
<td>3A 6E</td>
<td>31 69 7B 64 2D 2D 30 6B EB 2B 8B 3A 89 9B</td>
</tr>
<tr>
<td>0080</td>
<td>3A 69</td>
<td>29 69 32 8C 1E 30 4F 1C 30 5C 7A F8 10 8B</td>
</tr>
<tr>
<td>0090</td>
<td>28 9B</td>
<td>3A 90 31 8C 7B 30 80</td>
</tr>
</tbody>
</table>

_Microcomputing, August 1980_
THE ORIGINAL MAGAZINE FOR OWNERS OF THE TRS-80™ MICROCOMPUTER

MONTHLY NEWSMAGAZINE Practical Support For Model I & II

- PRACTICAL APPLICATIONS
- BUSINESS
- GAMBLING • GAMES
- EDUCATION
- PERSONAL FINANCE
- BEGINNER'S CORNER
- NEW PRODUCTS
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS

... AND MORE

PROGRAMS AND ARTICLES PUBLISHED IN OUR FIRST 12 ISSUES INCLUDE THE FOLLOWING:

- A COMPLETE INCOME TAX PROGRAM (LONG AND SHORT FORM)
- INVENTORY CONTROL
- STOCK MARKET ANALYSIS
- WORD PROCESSING PROGRAM (FOR DISK OR CASSETTE)
- LOWER CASE MODIFICATION FOR YOUR VIDEO MONITOR OR PRINTER
- PAYROLL (FEDERAL TAX WITHHOLDING PROGRAM)
- EXTEND 16 DIGIT ACCURACY TO TRS-80™ FUNCTIONS (SUCH AS SQUARE ROOTS AND TRIGONOMETRIC FUNCTIONS)
- NEW DISK DRIVES FOR YOUR TRS-80™
- PRINTER OPTIONS AVAILABLE FOR YOUR TRS-80™
- A HORSE SELECTION SYSTEM™ ARITHMETIC TEACHER
- COMPLETE MAILING LIST PROGRAMS (BOTH FOR DISK OR CASSETTE SEQUENTIAL AND RANDOM ACCESS)
- RANDOM SAMPLING™ BAR GRAPH
- CHECKBOOK MAINTENANCE PROGRAM
- LEVEL II UPDATES™ LEVEL II INDEX
- CREDIT CARD INFORMATION STORAGE FILE
- BEGINNER'S GUIDE TO MACHINE LANGUAGE AND ASSEMBLY LANGUAGE
- LINE RENUMBERING
- AND CASSETTE TIPS, PROGRAM HINTS, LATEST PRODUCTS COMING SOON (GENERAL LEDGER, ACCOUNTS PAYABLE AND RECEIVABLE, FORTRAN 80, FINANCIAL APPLICATIONS PACKAGE, PROGRAMS FOR HOMEOWNERS, MERGE TWO PROGRAMS, STATISTICAL AND MATHEMATICAL PROGRAMS (BOTH ELEMENTARY AND ADVANCED)) AND...

FREE

WORD PROCESSING PROGRAM (Cassette or Disk) For writing letters, text, mailing lists, etc., with each new subscriptions or renewal.

LEVEL II RAM TEST (Cassette or Disk) Checks random access memory to ensure that all memory locations are working properly.

DATA MANAGEMENT SYSTEM (Cassette or Disk) Complete file management for your TRS-80™

CLEANUP (Cassette or Disk) Fast action Maze Game

ADVENTURE (Cassette or Disk) Adventure #0 by Scott Adams (From Adventureland International)

SEND FOR OUR NEW 48 PAGE SOFTWARE CATALOG (INCLUDING LISTINGS OF HUNDREDS OF TRS-80™ PROGRAMS AVAILABLE ON CASSETTE AND DISKETTE). $2.00 OR FREE WITH EACH SUBSCRIPTIONS OR SAMPLE ISSUE.

Box 149 New City, New York 10956

ONE YEAR SUBSCRIPTION $24 ...........
TWO YEAR SUBSCRIPTION $48 ...........
SAMPLE OF LATEST ISSUE $ 4 ...........

NEW TOLL-FREE ORDER LINE (OUTSIDE OF N.Y. STATE) (800) 431-2818

24 HOUR ORDER LINE (914) 425-1535

CREDIT CARD NUMBER ____________________________ EXP. DATE ____________________________
SIGNATURE ____________________________
NAME ____________________________
ADDRESS ____________________________ CITY ____________________________ STATE ____________________________ ZIP ____________________________

*** ADD 16 YEAR (CANADA, MEXICO) - ADD $12/YEAR AIR MAIL - OUTSIDE OF U.S.A., CANADA & MEXICO ***

Microcomputing, August 1980 163
THE PASCAL/MT$250.00

- Compiler executes under the CP/M operating system in as little as 32 K bytes of RAM
- Interactive Symbolic Debugger which enables the programmer to examine variables, set a breakpoint, and trace procedure calls interactively at run time
- Compiles at the rate of 600 lines per minute on a 3.2 MZH 680
- Programs Execute up to 10 TIMES FASTER than popular interpretive Pascal
- The code generated is 8080 object code which is ROMable with a minimum run-time overhead of 11K bytes
- Interrupt procedures allow the programmer to write interrupt drivers for I/O and other real time tasks in Pascal MT
- Bit manipulations of variables may be performed with the built-in procedures: SETBIT, CLRBIT, TSTBIT, SHL, SHR, SHR LC, HL
- Assembly language subroutines may be called from Pascal MT
- Business arithmetic version of Pascal MT is also available
- Pascal data structures supported are: ENUMERATION and SUBRANGE, TYPES, RECORD, ARRAY, REAL, INTEGER, CHAR, and BOOLEAN
- Not implemented are: SETS, GOTO, GET, PUT

BUSINESS CONTROL PROGRAMS
FROM THE ORIGINATOR OF THE TRS-80® PROJECT

P.O. Box 16020
Ft. Worth, TX
76133
(817) 294-2510

THE MOST POWERFUL BASIC SHORTHAND EVER!

1. "SAVEABLE" KUSTOM keys. Ten 10-character keys and one 4-character.
2. 41 preprogrammed LV II and DOS statement keys.
3. Complete decal set (see picture) included for both LV II and DOS systems.
4. Includes DEBOUNCE and AUTO REPEAT.
5. Hold "SHIFT or CLEAR" and press desired key — entire statement is typed on screen.
6. Includes LOWER CASE DRIVER. "@" key substitutes for "SHIFT."
7. Less than 1K byte machine language, relocatable in hi or low memory.
8. Features self-entering commands. I.E. CONT; GOTO10; KUSTOM.

TSHORT +™ from WEB Associates

TRS-80 Keyboard with decals installed

- $19.95
- $24.95

Send check or money order to:
WEB ASSOCIATES
MARKETING CENTER
95 Emerald Bay
Laguna Beach, CA 92651
(Cafl. Residents add 6% tax)

Send for FREE CATALOG!

P.O. Box 324 (Dept. A)
Mary Esther, FL 32569
Phone (904) 243-5793

COVER YOUR INVESTMENT

- Cloth Backed Naugahyde Vinyl
- Improved Reliability
- Longer Life
- Waterproof & Dustproof
- Two Decorator Colors
- Saddle Tan; Black

TRS-80 Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-451</td>
<td>Black</td>
<td>$250.00</td>
</tr>
<tr>
<td>M-452</td>
<td>Black</td>
<td>$250.00</td>
</tr>
</tbody>
</table>

Send check or money order to:
COMPUCOVER
P.O. Box 324 (Dept. A)
Mary Esther, FL 32569
Phone (904) 243-5793

THE MICROCOMPUTING, AUGUST 1980
Chaining Data With the Sorcerer

Don’t let your Sorcerer torture you with limited capabilities.

Charles Dailey
3217 NE 54th St.
Vancouver, WA 98663

Filling capabilities were dismal with the 8K Microsoft BASIC that came with my Sorcerer. Exidy has a CSAVE that off-loads a program onto a cassette, but does not save the information entered into the program. A CSAVE* is available for off-loading numerical arrays. It is possible to convert strings to numerical data and then save it, but the CSAVE* command lacks the cyclical redundancy-check system that makes the regular CSAVE so reliable. As a result, practical filing capabilities are minimal in Sorcerer with cassette.

The obvious way to save information is to enter it as DATA statements and then extract it with READ/DATA commands. But this means you must set up a closely-structured sequence. In a mailing list, the name, always followed by the address, always followed by the city and zip, is required. Nothing can be skipped. If the zip is not available, you still must make a field for the one not available. This is confining and cumbersome.

Having several hundred 35 mm slides to index and cross-index, I wrote a program to identify any properly titled slide. The key to making this idea work was to input a word that would be found in the title and have the Sorcerer “read” all the data until it found it, then print that data statement. The “reading” would utilize the MIDS(D$,L,$) command, where D$ is the data string, L is the loop number and I is the length of the input word or string.

The system worked well, and it was simple to add refinements along the way—a counter terminating in an input command to keep the screen from scrolling, for instance.

The next problem was to figure a way to include more than one data line in the final printout. Slide titles could be stated in one line or less than 50 characters, but not data about equipment and supplies, sources of supply, prices and other relevant information. I needed a way to come back later and add new information without retyping the entire DATA line, so I built upon the plan used for the slide catalog and added the chaining capability.

To avoid having to retype the existing DATA line, I decided to begin the lines concatenated to the previous line with a plus sign. Leaving ten program lines between subjects gives you the option of adding nine additional lines of data, or of returning on nine later occasions to update the original data line.

Program listing.

```
100 CLEAR 5000:PRINT"PRINTING CATALOG:"
500 PRINT"Type in the word to be searched for in CAPITAL LETTERS"
600 PRINT
700 INPUT "i":GOTO1
800 I=LEN(D$:I):RESTORE
850 FOR L=0 TO V=100:CHR$(32):NEXT L
900 GOSUB 4000:GOTO9
950 PRINT "Checking for ""!
1000 READ D$
1050 IF D$="DONE"AND C=0:THEN PRINT:PRINT"PRINTING CATALOG:"
1070 IF D$="DONE" THEN GOTO 1500
1090 GOTO 1100
1100 I=LEN(D$:I):IFLEFT$(D$:I,1)="" THEN C=0:GOTO1500
1150 IFLEFT$(D$:I,10)="THEEND"THEN PRINT:PRINT"PRINTING CATALOG:"
4000 REM SUBROUNINES SECTION **********************
4010 PRINT CHR$(12):PRINT:PRINT:RETURN
4020 I
4050 PRINTPRINT "You may try another word":RETURN
4090 I
4120 FOR L=1 TO LEN(E$)
4150 IF S=MID$(E$,L,1) THEN GOSUB 4300:GOTO RETURN
4220 NEXT L:RETURN REM IS NOT FOUND SO RETURN TO 1500
4240 I
4280 C=C+1
4320 IF C>S THEN PRINTPRINT S$:RETURN
4340 E$(C)=""
4360 IF C=S THEN RETURN:REM:RETURNS TO 1500
4380 PRINT:PRINT
4400 INPUT "Press RETURN to clear screen and continue listing":Z
4430 GOSUB 4300:PRINT "Checking for ""!
4470 FOR L=5 TO 8PRINT E$(L):PRINTNEXT L=6:RETURN
4510 I
5500 REM ADD DATA HERE
5510 DATA THIS IS A SAMPLE OF THE FIRST LINE OF YOUR DATA
5511 DATA + DO THIS IF YOU WANT TO CONTINUE THE ENTRY
5512 DATA + THIS LINE MAY BE ADDED, TOO.
5520 DATA THE SECOND ENTRY SHOULD BEGIN HERE.
5521 DATA + AND THIS COULD BE ADDED TO IT.
9999 DATA LIST ENDS: REMI THIS MUST REMAIN AT THE END
10000 DATA DONE
```

Program listing.
SUPERIOR SOFTWARE PACKAGES FOR THE
TRRS-80*
SMARTTERM $79.95
UNQUESTIONABLY THE BEST
SMART TERMINAL PACKAGE
FOR THE TRS-80
• True Break Key
• Auto Repeat (Typomatic) keys
• Programmable 'soft' keys
• Forward/Reverse Scrolling
• Multipage Display
• Transmit from Disk File, Screen or Buffer
• Receive to Disk File, Buffer or printer
• Multiple Protocol Capability

SPOOL-80 $39.95
A TRUE DISK-TO-PRINT DESPOOLER
FOR THE TRS-80
• Print Disk Files While Running Other Programs
• Prints Compressed Basic Files
• Includes RS-232 Driver for Serial Printers
CALL US FOR YOUR CUSTOM SOFTWARE REQUIREMENTS $253

MICRON, INC.
Model II Versions Available
10045 Waterford Drive
Elicott City, MD 21043
(301) 461-2721

*TRS-80 is a Trademark of Tandy Corp.
DOUBLEVISION™

80 x 24 Video Display
with Upper and Lower Case

- Works with Apple II*, Apple II Plus*, and PASCAL
- Full 96 ASCII character set
- Fully programmable cursor:
  1-9 lines any position
  Blinking (2 speeds) and non-blinking
- All software included for BASIC (optional for PASCAL)
  - Compatible with the latest in word processing software "Apple-Pie 2.0"

Available now for............ $295.00

- Shift Lock Feature
- Built In Light Pen capability
- Inverse video
- Full cursor control
- 50/60 Hz operation
- No conflict with other boards

PASCAL software interface available for $25.00 additional
Allow up to 4 weeks for shipment.
All Mail orders add $3.00 for postage, insurance and handling

The Computer Stop
16919 Hawthorne Blvd.
Lawndale, CA 90260
(213) 371-4010

MON. - SAT.
10-6

Apple is a Registered TM of Apple Computers, Inc.

Calif. Residents add 6% Sales Tax

Microcomputing, August 1980 167
A “Personable” Calendar

Lists, lists, lists! Let PET clear the clutter and confusion.

G. R. Boynton, Chairman
Dept. of Political Science
University of Iowa
Iowa City, IA 52242

I work best off lists. So when time becomes tight, as it frequently does, I start producing lists. My desk calendar serves as one list, and there are usually several pads scattered around that have lists on them. And in the office I am using this year, there is an entire “green” board that I use for making lists.

This proliferation of lists not only produces clutter, but it also eventually leads to confusion. I often cannot find the right list.

So when my PET arrived a few months ago, I knew that one of the first things it would have to do was help me consolidate my lists. The result is this program, which I call a calendar. It stays in the computer whenever I am not using the PET for some other purpose, and it keeps me informed about what I am supposed to be doing and when.

Introduction

Before I describe the program and its operation, there are two things that need to be said. First, since this is a rather long program, the only way I could approach programming was to break it up into manageable pieces and write them one at a time. So the program is built out of 12 blocks, many of which are subroutines and subroutines within subroutines. Each section of the program is short—ten to 20 lines—and each was, thus, easy to write and, I hope, easy to understand. But the best way to understand this program is not to start at the first line and read through the last line.

Second, I call this program a “personable” calendar. I have used many programs for machines ranging from university-owned IBMs and CDCs to the PET. The programs were all designed to be used by the impersonal other.

This program is designed to be used by a human being—me. Several of my biases about what interacting with a computer ought to be like are built into this program; I had to leave out a number of biases to keep the program within 768 bytes and still have it perform its tasks. I am a person who wants to be recognized. I speak English and would like to interact with my computer more or less in English. I am not interested in interacting in the mode of Y, N, 1, 2, etc., even if it would save a little time.

As I go through the description of the program, I will show how it can be personalized for another human being—you. But if you are the kind of person who is in a hurry with computers, you probably will not like the “frills” associated with this program. If so, just cut them out. At the end of the article I will summarize some of the “personable” features in this program that I would like to see in other programs.

Program Description

The program is built out of twelve blocks of code. The list with line numbers is shown in Table 1. This list is repeated in lines 900-968 of the program listing. I fiddle with my programs, and I need to know what is where. REM statements may be good for some things, but they are not good for that. They are usually dispersed through the program, and they are not executable.

After this program is loaded it will describe itself if you type RUN 900 or if you type PROGRAM when the program asks “What’s next?” This is a particularly valuable feature to build in as you are writing a program. Whenever you want to check some other part of the program, you just type RUN 900, and this directory tells you what line numbers to list.

The first three sections of the program are all designed to say hello. The program begins by asking the user to type hello. Then lines 30, 40 and 50 look for my name in the response. If I

| 1. Control for hello | (lines 10-120) |
| 2. Greetings Bob | (lines 100-1090) |
| 3. Greetings other | (lines 1100-1199) |
| 4. Read data for calendar | (lines 2000-2140) |
| 5. Route for calendar subroutines | (lines 2145-2299) |
| 6. Today’s events | (lines 2300-2330) |
| 7. Other dates | (lines 2400-2450) |
| 8. Unfinished items | (lines 2500-2599) |
| 9. Change status of item | (lines 2600-2699) |
| 10. Add item to calendar | (lines 2700-2796) |
| 11. Write to tape | (lines 2800-2898) |
| 12. Search by date | (lines 2900-2999) |

Table 1. Program description
am in a good mood I sometimes type: “Good morning Isaac; this is Bob.” And if I am not in a good mood, I may be a little more taut.

If Isaac (my computer is named after Isaac Asimov, who practically invented the mobile computer) finds my name, then I am routed to lines 1010–1070, which produce a greeting from Isaac. It will not do for the program to be looking for my name on your computer. Just replace my name with your name in lines 40 and 60, and it will look for your name.

I wrote lines 1010–1070 because I got bored looking at the same greeting every time I used the program. So line 1010 generates a number between 1 and 4. Then line 1020 uses this number to route to one of four greetings. You can change these greetings to make them consistent with the style of your computer. Then line 1025 pauses for a few seconds, and line 1030 returns you to the main routine.

The second part of the greeting can be used to amaze one's family and friends. If the operator just types hello, as instructed, he or she will learn the name of the computer; you will, no doubt, want to change the name in line 70. The operator is also asked his or her name and is then given a brief description of the program in lines 1110–1180. It does not get used very often on my computer, but it does surprise people who have not been around this type of computer.

The program asks for the date, and then routes to the calendar part of the program. The program stores the list of calendar activities on a tape, and lines 2010–2040 read this tape. Lines 2010–2040 remind the user that the tape on which the program is stored must be taken out of the cassette and the data tape put in. Since it is a reminder, any answer to the question other than "no" will let you proceed.

Lines 2050 through 2140 do the actual reading. The first piece of information read is N, which is the number of items on the tape. N is used to define J in line 2080, and J is used in line 2090 to set the size of the three arrays that are used for storing data. The arrays are set larger than the data to be read so there will be room for making additions later in the program.

The section of the program in lines 2150–2295 asks if you want to see a list of today's activities. Then, beginning in line 2190, it routes you through the search and write routines, which make up the rest of the program. Lines 2190–2255 display the options. The user responds by typing the first word for the appropriate option. If you want
Past items not completed
then you type
Past

I thought of a number of ways to assist the uninformed user about which options would not be executed for the informed user, but I finally decided that it was not worth the extra lines of program. So you must have to key in the first word. Lines 2260 through 2285 convert the English into numbers, which are then used in line 2290 to route the program to the appropriate subroutine.

Each entry in the calendar is called an item. There are three routines for searching the calendar. There are also two routines for changing the calendar. The best introduction to these five routines is ADDITIONS.

With ADDITIONS, you are able to add items to your calendar. It asks for three pieces of information. It asks for the item's date, which includes an item number so that items for the same date can be distinguished. If there are already two activities to be done on November 1, then the date will look like
Nov 01 03
This is the third item for November 1. Then it asks what is the item to be entered. Any message to yourself no longer than two lines will do. Finally, it asks about the status: finished or unfinished?
It is very unlikely that you will be able to remember how many items there are on the calendar for a given day, so
IT$ (N+1). IT$ is the array that holds the items, and (N+1) puts the new item in the correct location in the array. Finally, you enter the status of the item, whether it is finished or not, in line 2745 as ST$ (N+1).

In line 2750 the program updates N so that the correct number of items will be written on the tape. It also updates a variable CH, which counts the changes you make. Then you are asked if you want to add another item, and if you do you cycle through the whole thing again.

When you have finished adding items, you are asked if you want to write the items on tape. It is possible to write the data to tape either at this point or later when you are finished with the program.

There is one very satisfying thing about making lists: crossing all of those items off the list. STATUS is not quite as good as a heavy swipe across the page, but this routine, in lines 2605-2695, does let you do something rather like that. You can type "finished," a satisfying experience. It also is very useful in that it permits the operation of one of the search routines.

STATUS first asks for the date of the item to be changed. Since the user is not likely to remember the item number, you are given the option of looking at the items for the date. Then the user is asked to specify whether the new status is to become "finished" or "not finished." The loop in lines 2665-2675 searches the array in which the dates are stored to find the date specified, and when that date is found, it changes the value to the status array. Notice that the CH variable is also updated in this routine as it was in ADDITIONS.

Two search routines, TODAY and OTHER, operate in a similar way. TODAY converts the date entered at the beginning of the program to SE$, and then it goes to the subroutine beginning at line 2900. OTHER asks which date you would like to find, converts the answer to SE$, and then goes to the same subroutine. The search is done by the loop in lines 2910-2930. Statements 2905 and 2920 let you search for any part of the date. If you know that something is supposed to happen in April, but you do not remember the day, you can search for all entries in April by simply typing April, or its abbreviation, in answer to the question asking for the date to be found. If you know the exact date, April 28, for example, then you can search for that specific date. This feature also lets you abbreviate the month in any way you wish as long as you are consistent.

There is one slightly inconvenient side effect of this procedure for searching. If you ask for April 2, the search routine will not distinguish April 2 from April 22 or April 28. Thus, you need to use 01, 02 and 03 for indicating the first, second and third day of each month.

PAST is the routine that searches for unfinished items. Here is what is hanging over your head, as it says. Since this list may get long (at least mine does), there is a pause built in by line 2580 so that the whole list does not go scrolling off the screen faster than you can read it.

The routine that writes the data to the tape is in lines 2800-2899, and when combined with lines 980 through 990, these lines provide two special services for the user. After adding items to the calendar, the user can write these items to the data tape. In addition, when you are finished with the program, which is signified by typing "done," the program makes two checks.

The three arrays grow as the number of items added to the calendar increases. This means that the amount of memory used also increases. Line 980 checks to see if there are at least 200 bytes of memory left.

When there is less than this amount of memory, the program asks the user if he or she wants the program to write the tape deleting all of the finished items. If the answer is yes, line 985 sets the variable E to 1 and goes to the PAST routine. It lists all of the items that are un-
there is no reason why every statement by the computer or the user needs to be the same every time the statement is made. Isaac can say “hello” in four different ways. There is no reason that this strategy could not be used to take boredom out of the repetitious tasks.

Also, Isaac can look for and find my name no matter what sentence I embed it in. One version of this program had a subroutine that let the user say “yes” in any of five ways. There is little reason for the interaction of computer and human being to be stilted; at least not when a moderate amount of imagination is exercised.

Second, the program is self-describing. Type RUN 900 or ask for program, and the program describes itself. REMark statements are useful if the program is written on a piece of paper. But if the program is too large to fit on the screen for a single viewing, they are likely to be hard for the user to find.

Third, programs that learn can be written. Learning in the sense of accumulating, storing and using information is quite easy to build into programs. This program learns how many items there are on the data file, how many changes have been made and whether they have all been written on the tape, and whether it is approaching the bounds of memory. Short game programs that are likely to be played repetitively or teaching programs can easily be written so that they learn about the skill of the user as he or she plays the game.

Finally, the computer ought to be programmed to do as much of the work as possible. This program keeps track of two important aspects of its operation: changes and core availability. Then the user does not have to do this work with the consequent problems it entails.

For “personal” computers it would be nice to have “personal” computer programs.

There is one nice thing about finishing this article: now I can type “finished” by an item that has been hanging over my head for more than a month.
MAYDAY™
The Complete Uninterruptable Power Supply

The lights blinked - even the slightest power failure can ruin a data disk and cause loss of the program.

Protect your time and investment -

for more information contact...

Sun - Technology, Inc.
Box 210
New Durham, New Hampshire 03855
(603) 859-7110

We honor: 

(Manufacturing high technology products since 1970)

PROFESSIONAL TRS-80 Business Software from 49.00

TRS-80 MODEL II
All of our Model II Software Requires CP/M and CBASIC. This allows you to take full advantage of your Model II.

CP/M ................................................. $250
CBASIC .............................................. $100

OSBORNE WITH OUR ENHANCEMENTS

GENERAL LEDGER .................................. $125.00
Handles up to 8000 transactions to as many as 750 operator defined accounts. Formal report formatting at report print time. It stores a full years of posting by Month, Year and Quarter. Handles Departmentalization. Integrates with Accounts Receivable and Accounts Payable.

PAYROLL ............................................ $125.00

ACCTS REC & PAY .................................. $125.00
Accounts Payable has complete Purchases Journal which creates Purchase Orders that post to Payables when goods are received. Calculates checks by due date or by demand. Aged Ledger Accounts Receivable has a complete Sales Ledger and handles open items with Balance Forward type payments allowed. Gives true aging plus more.

OUR PROGRAMS

INVENTORY ........................................ $350.00
CPA CLIENT WRITE UP .............................. $650.00

TRS-80 MODEL I
All these programs run with TRSDOS and Radio Shacks Level II Disk Basic.

Osborne
General Ledger, Payroll, Accts Rec & Payable. Each $49.00 or $129.00 for all three.

Manuals for the Osborne programs and ours $20 each

These programs are already running and can be working for you now. Just call or write and we will answer your questions as to how it can work for you.

Full Service Accounting & Processing

5423 Crows Nest, Fairfax, Va. 22030
VISA/MASTER CHARGE

(703) 573-7300

NEW!!

MODEL II $ 495.00 Manual $ 39.00

NRM Cobol with Multi Key ISAM

We deduct 2.00 from phone orders to cover your call for you!

172 Microcomputing, August 1980
NEW! Produced in U.K. and widely used in England and USA COMPLETE BUSINESS PACKAGE

INCLUDES EVERYTHING FROM INVENTORY TO SALES SUMMARY. PROMPTS USER AND VALIDATES ENTRIES.

MENU DRIVEN
BUS VER 3.00 to VER 9.00 PET and CP/M.

Approximately 60-100 entries/input require 2-4 hours weekly and entire business is under control

* PROGRAMS ARE INTEGRATED
01 = *ENTER NAMES & ADDRESSES.
02 = *ENTER INVOICES.
03 = *ENTER PURCHASES.
04 = *ENTER A/C RECEIVABLES.
05 = *ENTER A/C PAYABLES.
06 = *ENTER INVENTORY.
07 = *ENTER UPDATE ORDERS.
08 = *ENTER UPDATE BANKS.
09 = *EXAMINE/REPORT SALES LEDGER.
10 = *EXAMINE/REPORT PURCHASE LEDGER.
11 = *MONITOR INCOMPLETE RECORDS.
12 = *EXAMINE PRODUCT SALES

SELECT FUNCTION BY NUMBER
13 = *PRINT CUSTOMERS STATEMENTS.
14 = *PRINT SUPPLIERS STATEMENTS.
15 = *PRINT AGENT STATEMENTS.
16 = *PRINT TAX STATEMENTS.
17 = GENERAL HELP.
18 = ALTER VOCABULARIES.
19 = PRINT YEAR AUDIT.
20 = PRINT PROFITLOSS A/C.
21 = ENDMONTH MAINTENANCE.
22 = PRINT CASHFLOW FORECAST.
23 = ENTER PAYROLL NO RELEASE.
24 = EXIT SYSTEM

DATABASE MANAGEMENT INCLUDES
*** FILE CREATE/DELETE/SEARCH. *** RECORD CREATE/DELETE/SEARCH OPTION PRINT. *** RECORD SORT ANY FIELD ALPHA OR NUMERIC. *** INDEX SEARCH OR GENERAL SCANTPRINT IN ANY FIELD (EG TOWN OR NAME). *** 4 ARITHMETIC FUNCTIONS TO USE AS CALCULATOR ON LAST 4 FIELDS. *** AUTO CHECK TO PREVENT DOUBLE ENTRY TO FILE MANAGEMENT SYSTEM, DYNAMICALLY ALLOCATING INFORMATION TO MINIMIZE DISK SPACE CONSUMPTION

G.W. COMPUTERS U.K. ARE THE PRODUCERS OF THIS BEAUTIFUL PACKAGE
VER 3.00 (EXC PROG 19.20.22.23) = 475.00, VER 4.00 INCLUDES AUTO STOCK UPDATE = 675.00, VER 5.00 INCLUDES AUTO BANK UPDATE = 875.00, VER 6.00 INC. CORE = 775.00, VER 7.00 (INC 19.20.22.23) NOT YET RELEASED = 875.00, VER 8.00 RANDOM ACCESS = 900.00, VER 9.00 TRANSLATEABLE = 975.00

* * * EACH LEVEL OVERRIDES LOWER ONE.

WE EXPORT TO ALL COUNTRIES CALLERS ONLY BY APPOINTMENT CONTACT TONY WINTER ON 01.636.8210
89 Bedford Court Mansions, Bedford Avenue, London W.C.1. 75

NOTE!!! All versions, especially 9.00 use broad financial principles and 9.00 is one 16K core program releasing both disk drives for data storage, as well as being translateable into any foreign language.

---

MAGNETIC MEDIA DISTRIBUTORS
596 Taylor Way Belmont, California 94002 (415) 595-0684

Flip Sort™
DISK STORAGE SYSTEM

For Mini-Disks $34.95
For 8" Disks $44.95

plus $3.00 shipping for each Flip Sort™

DEALER INQUIRIES INVITED

FLOPPY DISKS FOR ALL COMPUTERS

5¼" DISKETTES

Single Side-Single Density (Certified 35 tracks) $2.65 $2.60
Single Side-Double Density (Certified 40 tracks) $3.50 $3.55
Double Side-Single Density (Quadrant Density) $4.70 $4.75
Double Side-Double Density (Certified 77 tracks) $6.00 $5.00

8" DISKS

Single Side-Single Density (Certified 20 tracks) $2.65 $2.60
Single Side-Double Density (Certified 27 tracks) $4.40 $4.40
Double Side-Single Density (Certified 27 tracks) $4.85 $4.85
Double Side-Double Density (Certified 27 tracks) $5.40 $5.40

We stock VERBATIM, WABASH, KYBE, KEYLINE & ATLANIA

Disks and Diskettes at LOW, LOW, prices. Write for our mini catalogue.

VINYL DISK SLEEVES for 5 1/4" and 8" Paks $8.00 10pak

FLOPPY SAVER (Hub Reinforcing Rings)

5 1/4" with applying tool $14.95 pk of 25 Refills $7.95
8" with applying tool $16.95 pk of 25 Refills $8.95

CALL TOLL FREE TO ORDER
800 227-7362
IN CALIFORNIA 415 595-0685

Reader Service index—page 241

Microcomputing, August 1980 173
Recover That Lost Disk
BASIC Program

A trick for the TRS-80.

Louise H. Frankenberg
1289 Magothy Rd.
Pasadena, MD 21122

If you have ever accidentally been rebooted back to DOS 2.1 while in the middle of keyboarding a long BASIC program, you will be happy to know that the program is still intact in memory and can easily be completely recovered. The following discussion assumes that you originally answered the FILES? question with the default value by merely pressing ENTER.

Storing the Program in Memory

Suppose you have typed in the following BASIC program:

```
1AAAAA
2BBBBBB
3CCCCC
```

Under DOS 'DEBUG' this will appear in memory as in Example 1.

The BASIC program always starts at location 68BA and ends after three 00 bytes in a row. The first two bytes of each BASIC statement contain the LSB and MSB of the starting address of the next statement. In the example, new statements start at 68BA, 68C7 and 68D5. The contents of address 68D5 point to an address containing 00, since that is the end of the program.

The next two bytes of each statement contain the BASIC line number (LSB and MSB). Here they contain 0100, 0200 and 0300. Next we have the BASIC code (3A 93 FB is TRS-80ese for "remark," 41 = "A," 42 = "B" and 43 = "C"), and then a single 00 byte. The program end address that you'll need to know for program recovery is the address of the byte immediately following the three 00 bytes. In this example it's at 68E3.

Program Recovery

Now that we've seen how the program is stored in memory, here are "cookbook" instructions for recovering your program (values for the example are in parentheses).

1. Go into the 'DEBUG' program immediately upon finding yourself in DOS.
2. Display the 6800 page and jot down the contents of addresses 68BA and 68BB (C7 and 68); convert to decimal (199 and 104).
3. Page through memory with 'DEBUG' until you find three 00 bytes in a row and jot down the following address (68E3); convert to decimal (LSB E3 = 227 and MSB 68 = 104).
4. Enter G5200 to return to BASIC (never use G402D and reload BASIC, or you'll wipe out the start of the program).
5. Answer FILES? and MEMORY SIZE? as originally.
6. Tell the computer what's in the beginning of the program and where to find the end. For the example you would POKE the following:
   POKE 26810,199 (contents of 68BA)
   POKE 26811,104 (contents of 68BB)
   POKE 16633,227 (LSB of end address)
   POKE 16634,104 (MSB of end address)

That's all there is to it! Your program is now ready to run, save on disk, add to or whatever.

Additional Notes and Comments.

I worked out the above the hard way. As a newcomer to disk, I lost hours of program typing in the process. An accidental reboot to DOS when doing disk I/O can be avoided in the first place by disabling the clock interrupt: either use CMD"T" or use 'DEBUG' to change addresses 468B-46BF to the following (the latter is Radio Shack's new official patch):

```
CB 57 20 13 FE 20 28 11
```

If you originally answer the FILES? question with something other than the default value, your program will start at a different address (it's at 69DC for FILES4). Find it with 'DEBUG'.

You can also recover a program that has "disappeared" after entering 'NEW'. In that case you would use CMD"S" to return to DOS, and go into 'DEBUG' as before. Since 'NEW' wipes out the contents of 68BA and 68BB, you will have to find the address where the second BASIC statement starts (68C7, in the example) and jot it down to poke into 68BA and 68BB. All the remaining steps are identical.

One more note: After I wrote this article, Radio Shack released DOS 2.2, which contained the clock-interrupt disable patch. This cured the problem for me. 2.2 appears to contain new bugs for multiple-drive use, but if you have only one disk drive I recommend you pick up your free copy as soon as possible.■
Now you can add high resolution graphics to your Commodore PET computer. The MTU K-1008-6 GRAPHIC INTERFACE can be used with either old, new, or business PET computers. It is simple to use, and fits inside the PET for protection.

The GRAPHIC INTERFACE gives you easy control over each dot in a matrix which is 320 wide by 200 high for a total of 64,000 dots. Because each dot can be controlled, either graphic images, text lines, or any mixture of the two can be displayed. Since each dot is controlled from software you can even design your own special character font or graphic image set (logic, chemical, architectural).

INTERFACE TO ALL PETS - With separate connector boards for each style PET (K-1007-2 for OLD PETS, K-1007-3 for NEW). The K-1008-6 can be used with either.

THREE TYPES OF VIDEO - You can select either normal PET video, graphic video, or the COMBINED image of both video signals simultaneously!

8K RAM MEMORY EXPANSION - The graphic matrix requires 8K RAM which is supplied onboard. This memory can be used for program or data storage when not being used for graphics (or see your program in binary on the display!).

FLEXIBLY ADDRESSED ROM SOCKETS - Five ROM sockets are included on the board. They can be set at the same or different addresses, with you controlling which sockets are enabled at any time through software control. You also choose the sockets to be enabled when the PET is turned on.

EXTERNAL EXPANSION - This board also creates the KIM memory expansion bus supported by all MTU products. This allows insertion into our K-1005-P card file for expansion up to 4 other boards outside the PET case.

LIGHT PEN - The board has been designed to work with an optional light pen which MTU will be announcing soon.

SOFTWARE INTERFACED TO BASIC - MTU also has available machine language software to allow you to plot points, draw lines, and display characters at high speed.

Call or write for our full line catalog of products.

MICRO TECHNOLOGY UNLIMITED
P.O. Box 12106
2806 Hillsborough Street
Raleigh, N.C. 27605
(919) 833-1458

Reader Service No. 154
I have been running a single-drive CP/M system on 5½-inch single density disks for a year now and haven't experienced the insufficient disk space that Hogan describes. The secret is to eliminate from your working disks all of the CP/M-supplied transient programs that you won't use in day-to-day operation. See Listing 1 for a record of a session that prepares a "packed" system disk for use in writing assembly-language programs.

Start with a Fresh Copy
A new CP/M user must first write-protect the system disk and make copies of it. You do this on a single-drive system by using routines supplied with your disk operating system (DOS). Next, you should use MOVCP/M and SYSGEN to generate the largest version of the operating system you can fit into your available read-write memory. You then won't need these programs on the disks you will be using daily. Other programs supplied on your system disk can also be eliminated on your working disks. But before you start erasing, make your system back-up copies.

You are now ready to take one of these copies and use it to generate a "packed" system disk. This will take the better part of an hour. Then you can write-protect this disk and make copies of it for your day-to-day use.

Packing a system disk involves more than erasing the unwanted files. This would leave a fragmented disk directory full of small holes where the old programs have been erased. Your new, long files would be broken into little pieces and scattered over the disk to fill all the holes left by erasing the unneeded files. This would cause an unnecessary amount of track-to-track stepping and too much waiting for the next sector to come around.

Why Do You Need to Pack?
Some operating systems for floppy disks will only write contiguous files. In such systems, each file has a starting track and sector and a file length recorded in the directory. On the disk, each sector of the file immediately follows the previous sector, until the complete file is written.

When files are deleted from the directory, that space is not used by the next write operation, because it might not be large enough to permit writing the entire file in one contiguous block. In such a system, periodic packing sessions are required following file erasures or updates. Packing a disk will move all the remaining files down in the disk address space to fill in all the holes.

This system's advantage is that once your disk drive read-write head has found
the first record of a file, it need only read consecutive sectors and tracks until the entire file is in memory. This results in the fastest possible load time. The disadvantage of the system is that in a typical work session involving repeated edit and assembly operations, the disk space will fill up more quickly, and you will have to stop while the system packs the disk.

**CP/M Does It Smarter**

CP/M uses a different technique, employing a disk map. The entire disk address space (track n, sector m) is mapped in the directory; a block of 1024 (1K) is the minimum size. In the soft and 16-sector formats, each sector contains 128 bytes, so each map entry points to a block of eight sectors. In the North Star ten-sector format, each entry addresses four 256-byte sectors (the double-density scene is even more complicated).

Each map entry points to the track and sector number of the first sector of each block only, so the remaining sectors must immediately follow each other. But this is true only within each 1K block, not the entire file, as was true with the other system.

This mapping means that when we write a long file, CP/M will find the first available 1K block on the disk and fill it, then find the next block and fill it and so on. If we have erased a number of short files—for example, one on track 6, one on track 14 and one on track 23—our long file will be broken up into 1K blocks and stored in all the holes on the disk. Loading a file that has been scatter-written takes considerably longer, and if your drive uses a noisy stepper motor, you can hear the numerous track-to-track seeks. Such drives sound nervous, buzzing from track to track collecting the program.

A disk-mapped operating system's advantage is that the disk takes longer to fill up, since every available block is filled from the bottom of the disk up. A disadvantage, in addition to possible fragmentation, is that no file can be less than 1K. The last block assigned to a file can possibly contain only a single byte, but it still takes up 1K of disk space!

We should not simply erase the unwanted files on our CP/M disk and start using the disk at that point. We should first pack the disk. The session that produced the accompanying listing is not something you would want to endure very often, so go through it only once, and then make copies of the resulting packed system disk for your daily operations.

**Start Packing**

The listing starts with a dump of the directory of the CP/M for North Star disk as supplied by Lifeboat Associates. In this example, MOVCPM and SYSGEN have been renamed, since they contain procedures specific to the North Star computer. Assuming we have completed our system generation and CBiOS (Custom BASIC Input-Output System), we are ready to pack.

First, decide what programs you want to save and put them in order according to frequency of use. Since you are going to speed up your disk access by packing a system disk, you might as well have the most-used programs at the start of the disk, where they can be found fastest.

Working in assembly language, you are going to be editing, assembling, debugging, editing, assembling and debugging. Thus, you want to pack your disk in the following sequence: ED.COM, ASM.COM, DDT.COM.

What comes next is pretty much a toss-up. Note that I have erased SUBMIT.COM. You might want to hang on to it, unless you are sure you won't be using it.

You have listed the directory and used STAT to see how much space each file occupies and how much disk space you have left. To pack the disk, you will have to move all the programs you want to save to the top of the disk address space and then clear out the bottom of the disk space to produce one large hole. When you then move the saved programs back down, they will each

| a>DIR                | a>DIR                |
| a:NRELSCOM          | a:ED.COM            |
| a:COM               | a:ED.COM            |
| a:DDT.COM           | a:DDT.COM           |
| a:PDP.COM           | a:DDT.COM           |
| a:DUMP.COM          | a:DDT.COM           |
| a:FILENAME          | a:DDT.COM           |
| a:RECS Bytes Ex D:  | a:DDT.COM           |
| a:FILENAME Typ      | a:DDT.COM           |
| a:DIR               | a:DDT.COM           |
| a:NRELSCOM          | a:DDT.COM           |
| a:COM               | a:DDT.COM           |
| a:DDT.COM           | a:DDT.COM           |
| a:PDP.COM           | a:DDT.COM           |
| a:DUMP.COM          | a:DDT.COM           |
| a:FILENAME          | a:DDT.COM           |
| a:RECS Bytes Ex D:  | a:DDT.COM           |
| a:FILENAME Typ      | a:DDT.COM           |
| a:DIR               | a:DDT.COM           |
| a:NRELSCOM          | a:DDT.COM           |
| a:COM               | a:DDT.COM           |
| a:DDT.COM           | a:DDT.COM           |
| a:PDP.COM           | a:DDT.COM           |
| a:DUMP.COM          | a:DDT.COM           |
| a:FILENAME          | a:DDT.COM           |

Program listing. Console messages during a mini-disk packing session. Eliminating unnecessary files from the CP/M system disk increases the available workspace by 19K. Packing the remaining programs reduces access time. A final system patch permits the use of 40-track disk drives, adding another 12K.

Microcomputing, August 1980 177
be written in one contiguous block.

Using the STAT listing, you have 27K of space on the disk, and the programs you want to save total 32K. So you start by erasing the .ASM files. Next, PIP is used to move the seven files you want to save. Since you can’t use duplicate names, tell PIP to make a file copy of each program in turn, but with a file type of .SAV.

Once you have your seven .SAV files, STAT tells you that you have used up all of the disk except a single 1K block. One side benefit of this procedure is that it gives the operator, PIP, and the disk drive a real test and checks out the whole disk surface in the process.

Now Do It All Over Again

Now you create your big hole at the bottom of the disk space by erasing all of the .COM files (are you sure you have everything backed up?). You need a PIP.COM file to use for the move back, so you next have to rename PIP.SAV as PIP.COM. This new PIP is then used to move the .SAV files back down as .COM files. In the process, PIP has to move itself, so you temporarily call this new PIP file by another name.

When you are done with the packing, you erase PIP.COM and rename the packed version of PIP. Now DIR and STAT *.* are used to inspect the new packed system disk. You have 46K of workspace, a reasonable amount for an assembly-language programmer. Since you are talking about a single-drive mini-floppy CP/M system, you should keep in mind that you don’t want to get too much work on a single disk anyway, since the only way you have to copy a file is to copy the whole disk.

I have found that this size disk is convenient for assembly-language work, my primary use for the system. A couple of reasonably sized source files and their hex, object and print files will pretty well fill a disk. At that time, it is a good idea to file that disk away for safekeeping.

BASIC is another matter, since BASIC language programs breed like rabbits, but on a single drive system you need only save BASIC itself, and maybe STAT. If you erase everything else on the disk, you will end up with about 40K of workspace.

Even More Space

I ran across a real bargain in Wangco Model 82 mini-floppy drives, and since they can access 40 tracks instead of the standard 35, I had to figure out a method for patching CP/M to make it use the extra track. At the bottom of the listing you will see that I found and patched the location in CP/M that tells it how much disk space is available.

Five more tracks add 5 x 10 x 256 (12,800) bytes in the North Star format, so I incremented the 4F (hex) by C (hex), which adds an extra 12K to the usable disk space. You will have to be certain that your DOS will properly address 40 tracks before making this patch, however. And note that the GA040 accesses a “write tracks 0 through 2 only” routine in my DOS. Yours will not be at this address.

Comfortable Conclusions

The Wangco drives also permit the use of both sides of each disk, which should be called flippy-disks to avoid confusion with read double-sided-type drives, which have two heads. This combination of two sides and 40 tracks makes a very usable configuration. I’m not anxious to tackle the problems of double density because I find the present configuration reliable and comfortable. Eight-inch floppies are a bit awkward to handle. The stiffer mini-floppies store well, and CP/M is a good operating system for them.

However, even this system needs a single-drive filecopy routine. I have written one, and next month’s issue will have a complete assembly-language listing.
Write and run programs—the very first night—even if you've never used a computer before!

You're up and running with video graphics for just $99.95—then use low cost add-ons to create your own personal system that rivets home computers sold for 5-times ELF's low price!

SS-50 Newsletter

THE ONLY OTHER ALL 6800 COMPUTER MAGAZINE

Devoted to the 6800 and 6809 hobbyist...Software, Hardware, fixes, reviews and much more!!

Charter Subscription: $12.00-1 Year $22.00-2 Years

FREE SAMPLE ISSUE

6800, 6809, 6502

PROGRAMMERS AND HARDWARE MONITORS

6000, 6800, 6809

Small, growing, established company ($600K sales) needs experienced programmers and hardware people in the Manchester, N.H. area. You will aid our development of 6800 based "black boxes" that monitor industrial production/manufacturing functions. You will interface these units to various mini/micro computers via RS232 and develop number crunching/display programs. Position(s) could evolve into full time (if desired) within 12-18 months. This is a unique opportunity for right individual.

Contact: Karl Ritzinger
Industrial Marine Electronics Inc. 61 Harvey Road - RDF #10
Manchester, N.H. 03103
(603) 434-2309

All About

OSI

BASIC-IN-ROM

Ohio Scientific Microsoft BASIC Version 1.0 Rev. 3.2

REFERENCE MANUAL

Complete, Concise, Accurate, Detailed. All commands, statements, and functions. Mops, Uops, Tapes, Bug fixes. Variable table.

Source code storage. MONITOR.

Postpaid $8.95 Send check or COD

EDWARD H. CARLSON

3872 RALEIGH DR.
OKEMOS, MI 48864

Dealer Inquiries Welcome

- Reader Service index — page 241

- Microcomputing, August 1980 179
Some Notes on Termination

Protect your program from those incessant glitches.

Reo W. Pratt
2264 Cambridge Dr. SE
Grand Rapids, MI 49506

The ad said, "Eliminates noise, ringing, cross talk and overshoot!" It claimed that if you had any inexplicable problems, such as your system running fine and suddenly "crashing," the cause might be an unterminated motherboard. Proper termination will eliminate those frustrating "glitches" that appear only long enough to destroy the program you keyed in. I recently had the opportunity to verify these claims with the help of Bill Godbout and two of his technical staff. Although most computerists accept the need for bus termination (most motherboards come with onboard termination now), you might be interested in the results of the tests I ran, particularly if you own or are planning to buy one of the older S-100 computers with an unterminated motherboard.

The Reason for Termination

When a signal or pulse is sent out on a bus line, it has to go somewhere. Many pulses placed on the bus by the processor are not used by other devices plugged into the board. When these pulses reach the end of an unterminated line, they bounce back, induce signals in adjacent lines, radiate into space—or some combination of all three.

The degree to which this occurs depends on several interrelated factors. The most significant are the signal frequency, the length of the conductor and the spacing between adjacent conductors. The higher the frequency, the more critical proper termination becomes. Even the slowest microprocessors deal with frequencies well into the radio-frequency spectrum. If you have trouble accepting this, remember that the clock fre-

Listing 1. "Jump to here" program.

D400 C3 JMP
D401 00 D400
D402 D4

Photo 1. POC and CLOCK lines with active termination enabled.

Photo 2. POC and CLOCK lines without termination.
frequency of an 8080 is 2 MHz. This is much higher in the spectrum than the highest point on your AM dial (1.6 kHz).

**Termination Problems**

Noise is electrical energy on the bus that shouldn't be there. It comes from a variety of sources and, once it appears, won't go away—until you start to look for it.

Ringing occurs when a signal that is changing logic level (pulled high or low) doesn't stay at its intended level. This appears as a damped oscillation in the photographs.

Cross talk occurs when a signal on one line is imprinted on the line or lines adjacent to it. It causes confusion when the altered signal arrives at its destination.

Overshoot happens when a signal changes logic state with such force that it "shoots" past its intended level. It is closely associated with, and precedes, ringing.

To observe these problems, I used a Tektronix oscilloscope with 50 MHz bandwidth and dual-trace capability. I observed the various signal lines on an "older" IMSAI 8080 with a Godbout active-terminator board that unplugged to look at the terminated and unterminated lines. I recorded the oscilloscope pictures with a 4 x 5 Graphex camera with a Polaroid back.

To keep the processor continuously cycling during the test, I keyed in a short "jump to here" program (see Listing 1).

Photo 1 shows POC (top) and CLOCK lines. It is an excellent example of cross talk. Note how the POC line appears to follow the CLOCK line up and down. Note also that the POC voltage scale is set to ¼ the value of the CLOCK line—500 millivolts, as compared to two volts for the CLOCK trace. If the voltage scales were the same, the variations in the upper trace would not be as pronounced.

The terminator board improves the situation. Photo 1 shows the terminating network enabled. Photo 2 shows the effects of no termination. Noise, cross talk, undershoot and overshoot are all present in ample quantities. Compare the same portions of both traces. As you can see from the scope's illuminated graticule, the camera was well focused. The thickness of the traces, particularly the upper one, is due to noise, not poor photography.

Photos 3 and 4 show the PDBIN line in the upper trace and the DI7 line in the lower trace. The terminator board is enabled in Photo 3; it is removed from the machine in Photo 4. These photos show best how the terminator board reduces overshoot and ringing. Using two volts per division as shown on the scope face, you can see that the high logic level with the terminator in is only about three volts, whereas it is over four volts with no termination.

**Technical Aspects of Termination**

Amateur radio operators are familiar with the principles of termination through antenna and transmission-line theory. The bus lines in a computer carry a signal from one point to another as does a transmission line. The terminating network in a computer does more than just provide a proper load to sink signal current. It also sources current for logic signals that may lack sufficient drive and holds the high logic voltage at the optimum level.

Ones and zeros are generally represented by five and zero volts, respectively. However, a look at a data sheet shows that most TTL gates view anything over two volts as logic high, with 2.6 volts optimum. Holding the logic-high-state voltage to the optimum reduces overshoot since the signal only has half as far to go when it changes state.

Fig. 1 shows the simplest form of termination: two resistors for each line wired to the 5 volt "rail" and ground to source and sink current as required. It is effective but has one drawback. With all those resistors wired between +5 volts and ground for nearly 100 lines, the power supply has an increased load to bear. If you apply Ohm's law, you'll find that the extra load is about ½ Amp. This may not be too much, depending on the system, but there is a better way.

Active termination uses only one resistor per line in place of two and a sensing network composed of an operational amplifier that sinks or sources current only as it is needed. It effectively "switches" the terminating network on and off the bus lines as required, eliminating the constant power draw. Total constant current draw on the Godbout active terminator board, for example, is only 20 milliamperes.

Proper termination of the lines on a motherboard or backplane is simply a design necessity that never should have been omitted from the original S-100 systems. Recently advertised motherboards from Godbout have Faraday shielding between the lines as well as active termination networks on the board. Other manufacturers also advertise similar boards. Look into the "termination situation" carefully. It could save a lot of frustration in your computing future.

---

**Fig. 1. Passive termination.**

---

**Photo 3. PDBIN and DI7 lines. Termination enabled.**

**Photo 4. PDBIN and DI7 lines. Terminator removed from bus.**
Fastfind

For the computerist in a hurry to search large arrays.

Bill Roch
24000 Bessemer St.
Woodland Hills, CA 91367

This article describes a fast way to find a match between a variable and a variable in an array. One way to do this is to use a number of IF statements (see Example 1).

This is fine for checking a couple of variables, but why write the same thing over and over again when you can do it with a FOR-NEXT loop in three or four statements? The FOR-NEXT loop is a better way to find a match between a single variable and a variable in a small array (see Example 2).

This is an excellent method if the array is small or the program only executes this loop a few times. However, if the array contains 1000 variables or the program uses this loop for every record it processes, the computer will spend a lot of time "spinning its wheels," i.e., comparing nonmatching variables.

The same waste of time occurs when the computer searches for the matching index or key in a sequential random file. Most of the computer time is spent asking, "Do I have a match?" and answering "No—Go get the next record."

With a FOR-NEXT loop, the average search will be made through half of the array to find a match—all wasted time except for the final match.

A Faster Way

Using the FASTFIND routine on an array of 1000 sequential variables will only require a maximum of ten tries to find any variable in the array.

To find 999 in an array of 1000 the first attempted match would be on 500. Since the array variable of 500 is less than the 999 being looked for, the next attempt is made at 750. The next attempt would be at 875. Each time the area to search is cut in half. This continues until the match is found.

Table 1 shows the calculated subscript used to find a match for the number 955 in an array of 1 to 1000. The low subscript number is set to 0, and the high is set to 1001. As before, the first attempted match is made at 500—low + high divided by two. The value 955 is higher than 500 so the 500 is used as the low subscript number and the process is repeated.

This continues until the 955 is lower than the calculated subscript number, at which time the calculated subscript is substituted for the high subscript number. Decimal numbers are rounded down (turned into integers) so that one half of (938 + 1001) equals 969, not 970. On the ninth iteration the number 955 matches the subscript.

Why is the low-high range 0 to 1001, while the actual range to be searched is from 1 to 1000? This is done so the subscripts 1 and 1000 will find a match. Otherwise, we get 1 + 2 = 3 and half of 3 = 1, so subscript 2 is never found. At the other end we have 1000 + 999 = 1999, and half of 1999 = 999—another endless loop.

Routines

Two sample routines are provided; each has a test driver program for testing the routine. Listing 1 is in standard BASIC, and Listing 2 is in Tarbell TBASIC, which makes use of some of the TBASIC features. Both programs do the same thing. Listing 1 fastfinds a number, while Listing 2 fastfinds a string.

Listing 1 illustrates FASTFIND for a number match. The program first builds an array containing 1000 variables ranging from 1 to 3001 using every third number (1, 4, 7, . . . , 3001). The printed output from this program shows the count of the tries it took to find a match for the entered variable. When the number entered from the keyboard is out of range, the program requests that a correct number be reentered.

When the number entered from the keyboard is not found,
FASTFIND ROUTINE

ENTER ARRAY VALUE: ? 1
9 TRYS - ARRAY VALUE [ 1 ] IN A(1)
ENTER ARRAY VALUE: ? 3
10 TRYS - ARRAY VALUE [ 3 ] NOT FOUND
   NEXT LOWEST ARRAY VALUE IS [ 1 ] IS IN A(1)
ENTER ARRAY VALUE: ? 8
10 TRYS - ARRAY VALUE [ 8 ] IN A(2)
ENTER ARRAY VALUE: ? 3001
8 TRYS - ARRAY VALUE [ 3001 ] IN A(1001)
ENTER ARRAY VALUE: ? 3000
10 TRYS - ARRAY VALUE [ 3000 ] NOT FOUND
   NEXT LOWEST ARRAY VALUE IS [ 2998 ] IS IN A(1000)
ENTER ARRAY VALUE: ? 2998
10 TRYS - ARRAY VALUE [ 2998 ] IN A(1000)
ENTER ARRAY VALUE: ? 1504
1 TRYS - ARRAY VALUE [ 1504 ] IN A(502)
ENTER ARRAY VALUE: ? 1000
9 TRYS - ARRAY VALUE [ 1000 ] IN A(334)

Sample standard BASIC run.

10 REM ***************
20 REM **
30 PRINT "FASTFIND ROUTINE"
40 REM ** TEST PROGRAM
50 REM **
60 REM **
70 DIM A(1004)
80 REM
90 REM
100 DIM A(1004)
110 J=0
120 FOR K=1 TO 3002 STEP 3:REM BUILD AN ARRAY
130 J=J+1
140 A(J):K:REM RANGE 1 TO 3001
150 NEXT K:REM 1,4,7,...,3001
160 L1:0:REM LOWEST SUBSCRIPT VALUE MINUS 1
170 H1:J-3:REM HIGHEST SUBSCRIPT VALUE PLUS STEP
180 PRINT "ENTER ARRAY VALUE: ? " R
190 IF B=0 OR B<3 THEN GOTO 160:REM OUT OF RANGE
200 GOSUS 400
210 PRINT C1:"TRYS - ARRAY VALUE [";B;"]:"
220 ON E: GOTO 250
230 PRINT "IN A(";STR$(K1);")"
240 GOTO 160
250 PRINT "NOT FOUND"
260 PRINT "NEXT LOWEST ARRAY VALUE IS [";A(K1);";]
270 PRINT "IS IN A(";STR$(K1);")"
280 GOTO 160
290 REM
300 REM **
310 REM ** FASTFIND ROUTINE **
320 REM **
330 REM
340 REM
350 REM INPUT TO ROUTINE
360 REM B - VALUE TO FIND IN ARRAY A(X)
370 REM L1 - LOWEST ARRAY SUBSCRIPT
380 REM H1 - HIGHEST ARRAY SUBSCRIPT
390 REM OUTPUT FROM ROUTINE
400 REM C1 - NUMBER OF TRYS COUNTER
410 REM E1 - ERROR FLAG
420 REM 0 = FOUND
430 REM 1 = NOT FOUND
440 REM K1 - SUBSCRIPT NUMBER IN ARRAY
450 REM CONTAINING FOUND VALUE
460 REM
470 REM E1:0:REM RESET NOT FOUND FLAG
480 REM C1:0:REM ZERO FIND COUNTER
490 REM K1=INT((L1+H1)/2):REM CALCULATE FIND NO.
500 REM IF K1<L1 THEN GOTO 560:REM IF CALC NO = LOW NO - NOT FOUND
510 REM IF K1>H1 THEN GOTO 560:REM SET NOT FOUND FLAG
520 REM GOTO 640
530 REM C1=C1+1:REM ADD 1 TO TRY COUNTER
540 REM IF B=A(K1) THEN GOTO 640
550 REM IF B=A(K1) THEN GOTO 600
560 REM IF B=A(K1) THEN GOTO 620
570 REM L1=K1:REM MAKE LOW SUBSCRIPT = POINTER
580 REM GOTO 520
590 REM GOTO 520
600 REM GOTO 520
610 REM GOTO 520
620 REM GOTO 520
630 REM GOTO 520
640 REM GOTO 520

Listing 1. FASTFIND routine in standard BASIC.

Enter Array Value: AA00
9 TRYS - Array Value [AA00] is in ARRAY$(1)

Enter Array Value: EJ90
1 TRYS - Array Value [EJ90] is in ARRAY$(500)

Enter Array Value: JJ90
10 TRYS - Array Value [JJ90] is in ARRAY$(1000)

Enter Array Value: AA10
10 TRYS - Array Value [AA10] is in ARRAY$(2)

Enter Array Value: AA01
10 TRYS - Array Value [AA01] NOT FOUND
   Next Lowest Array Value is [AA00] in ARRAY$(1)

Enter Array Value: AA09
10 TRYS - Array Value [AA09] NOT FOUND
   Next Lowest Array Value is [AA00] in ARRAY$(1)

Enter Array Value: BA40
8 TRYS - Array Value [BA40] is in ARRAY$(105)

Sample Tarbell BASIC run.

the program sets a NOT FOUND flag and prints out NOT FOUND. It also prints out the next lowest array value and its

script position in the array.

The Tarbell BASIC program (Listing 2) illustrates how the FASTFIND routine could be used in finding selected se-quential keyed records in a random file. The test program first creates an array containing string values, simulating a se-quential set of record keys.

These keys (or index) range from AA00 through JJ90 (AA00,AA10,AA20...AB00...JJ90). This string array could consist of names, part numbers, account numbers, policy codes, etc. The program using the FASTFIND routine would first read all the keys or IDs into an array similar to the one generated by the program.

The routine in this program operates in the same manner as the standard BASIC routine. It keeps cutting the search range in half until a match is found. When the match is found, the subscript number becomes the record number for the file read from a random file.

If no match is found, the routine will return an error flag that causes the NOT FOUND to be printed. The next lowest ar-ray value with the subscript of that value is also printed.

It may be that 80 percent of the time the desired record is in the top (high subscript values) end of the file. Instead of going in at the middle of the file and
calculating all the way to the number, go in just below where most of the action is. This will save two or three extra attempted matches.

Suppose the routine is being used with a name file that keys on names. In the case of a filename with five JONESes, the routine will return as soon as it finds a JONES. There is one chance in five that it found the right JONES, and it will always find the same JONES and return the same subscript value. By adding to or subtracting from the subscript, the desired record can be found.

Another way would be to subtract five from the subscript and use a FOR-NEXT loop to find a match on JONES and JONES' first name.

Three nice features of Tarbell's TBASIC are shown in Listing 2:

- Meaningful line labels instead of line numbers.
- Long variable names.
- Ability to transfer variables with GOSUB, RETURN and RECEIVE statements.

Summary

Considerable computer time can be saved using a FASTFIND routine instead of a FOR-NEXT loop when searching large arrays. A routine of this type can work equally well with strings and numbers. The number of reads required to find the proper key in a random file can be greatly reduced.

```
LISTING 2. FASTFIND routine in Tarbell BASIC.
```

**SS: 50**
- **CALCULATOR - CLOCK**
- **INTERPRETER GENERATOR**
- **BATTERY BACK-UP**
- **PARALLEL I/O PORT**
- **SAMPLE FORMAT**: SAT JUL 26 1980 10:30:24 PM

**CLK**:

- The crystal-controlled 9K pace MARB board provides a real time clock/clock. The battery is charged when the computer is on and will keep the clock running for a week without power. (No backup components needed). Time/day is read from 9K pace MARB board and is seen using the software provided in the 64 page manual. Inclueds a sample BASIC program to read time/day. Both the battery and the 9K pace are rated at 100% charging. When using for the first time, charge for at least three hours. After this, the 9K pace MARB board is ready to use. The board is designed to be used with a computer that supports 9K pace MARB board. It includes all necessary components and is ready for installation.

**FIBER**:

- The fiber-optic board provides a convenient and secure method of transmitting data. It includes all necessary components and is ready for installation.

**NEW! Factory Direct Products for Your Computer & Your Home!**

**the BRUTES**
- Heavy duty solid-state AC switches control your water heater or other heavy loads. Goto isolated - 5000V isolation. All units tested to 1 million cycles. Tested for full load and 50% load. 50% load only (for UL use). Available for IMMEDIATE DELIVERY. $19.95 each. A & T $11.95.

**the WATCHDOG**
- Power failure to standard outlet. Audible buzzer lets you know immediately when power fails. Alerts you to check your freezer, compressor, alarm clock, and other critical devices when power fails. Available in 120V, 240V, and 110V models. $29.95 each.

**the SPIKE-SPIKER**
- Power console w/ solid-state transient absorber plus conductive USB filters. Compact desktop unit comes complete with integral on-off switch, fuse, plug and ground, and 120 volt protected & individually switched convenience outlets. Helps protect valuable equipment from lightning, power line transients and other interference. Makes 100 watt AC units of all your equipment at one time. No more unplugging & re-plugging a million power cords.

**MoonsShadow Text Formatter for UCSD PascaT™ Systems**
- The UCSD PascaT™ system contains a screen-oriented text editor which is convenient, but which is not suited to word processing. It cannot undo, provide automatic correction, perform other essential text-processing functions. The MoonsShadow Text Formatter (MTF) from Merrimack Systems solves this problem.

With the MoonsShadow Text Formatter, documents produced with the screen editor are post-processed to provide these missing functions. It takes standard Pascal text files, operates on them, and sends fully formatted text output to the console display, printer, or disk file.

Moonshadow Text Formatter provides, in addition to the full range of formatting functions, advanced features including: the combination of files into one document, insertion of text in context (for record headings), and output and character translation.

The MoonsShadow Text Formatter is written in UCSD Pascal™, and is available for Northern Star Apple II, LSI-11, and 8080/8080+ systems with IBM Personal System II "floppy disk.

All this for $125.00 from Merrimack Systems.

**POB 5216**
Redwood City, CA 94063
(415) 555-2681

California residents should include 6% sales tax. Also available North Star Pascal personalization for SOL/SOLOS — just transfer three files and you’re up with Pascal. $25.00.
MAILROOM PLUS

Make Your TRS 80 Work Like A Mini-IBM!

Mailroom Plus was developed for the National Rifle Association membership mailings. It features sorting by last name or member number in addition to zip code. The program will sort 500 names in 30-40 minutes, kill duplicates, and close up the file. Mailroom Plus will also search all records for category, name, state, and zip (or any other search code) and print these records on labels or in tabular form. It separates large files into smaller ones by state or zip and merges small files into one large one. Mailroom Plus is available on 32-48K disk for $75.00 by first class mail. Order yours today.

THE PERIPHERAL PEOPLE

PO Box 524, Mercer Island, WA 98040
206-232-4505
Master Charge and VISA cards welcomed

TR-80 & OTHER NEEDS FILLED FOR LESS

+ + + COMPATIBLE DISK DRIVES WITH POWER SUPPLY AND CASE...120 DAY WARRANTY + + +
+ 40 TRACK (204,800 BYTE/DISK) USE BOTH SIDES, ANTI-CRIMP/PWR PROTECT $339
+ 81/2 IN. DRIVE & CASE $790 WITH P.S./CASE FOR 3 DRIVES $950
+ 77 TRACK (197,120 BYTE) 90 DAY WARRANTY $450
+ 20 TRACK 4 TRACKS $31 - 10 DISKS 5 IN. @ $25 8 1/2 IN. @ $39 HARD CASE $3 & $5
+ BASE 2 PRINTER-BASE LINEMAN, 72,80,96,120 OR 132 CHAR. LINE DIRECT-DOT MATRIX IMPACT 96 CHAR ASCII, 15 BAUD RATES) $499 2K BUFFER, GRAPHICS, & TRACTOR OPTION AVAILABLE
+ CENTRONICS MODEL 732 $340 + + + + + + CABAL $28
+ HARRIS SELECTRIC (WORD PROCESSING-TYPewriter & PRINTER) $790
+ LOWER CASE FOR CENTRONICS 739/RADIO SHACK LINE PRINTER 1 EASY INSTALL $99.95
+ UPS (UNINTERRUPTIBLE POWER SUPPLY) PREVENT POWER DROP OUT OR OUT FROM $195
+ CAT MODEM/TERMINAL $1517 + + + + + + $16K MEMORY SET (200 NANO) $57
+ 16K L2 RADIO SHACK COMPUTER SYSTEM $649
+ APPLE, ATARI, RADIO SHACK MODEL 1/2 HARDWARE/SOFTWARE DISCOUNTED/LOW PRICES/PRI FOR $380 OR $100 EA. (MODEL 1) & $380 OR $165 EA. (MODEL 2). APPLICATIONS INTERACT & ARE COMPLETE & PROFESSIONAL. WILL RUN ON OTHER COMPUTERS. THIS IS A SPECIAL INTRODUCTORY PRICE.
+ ASK FOR FREE FLYER WITH OUR LOW PRICES—DEALER INQUIRES INVITED. RATES ADD 5% TAX—F.O.B. TEWKSBURY—FREIGHT EXTRA.
+ MC, VISA OR CHECK ACCEPTED. TRS-80 IS A REG. TRADEMARK OF TANDY CORP.

OMNITEK SYSTEMS — 24 MARCIA JEAN DR., DEPT. K, TEWKSBURY, MA 01876 CALL 617-851-3156

TR-80 DISK FILE MESS?

Find disk files instantly with the most sophisticated disk indexing program available. Similar Indexing programs exist but none with as many features as FINDISK-II.

- AUTOMATICALLY create, sort, print, search a Master Index of all disk files.
- AUTOMATICALLY read file names, disk numbers (no hand entry).
- AUTOMATICALLY print disk labels (optional).
- AUTOMATICALLY update Index from revised disks.
- AUTOMATICALLY add optional file descriptions.
- AUTOMATICALLY purge disk of unwanted files.
- DISKINDEX-II (on tape or disk, 32K min.) $20.00

Other powerful programs from Documan available on tape or disk:
- STRUCT I beam design and moment transfer w/graphics (16K) $15.00
- SOLAR II essential calculations for passive solar design (32K) $30.00
- RIA-I complex analysis of real estate investments (32K) $30.00
- DEPRECIATE-I calculate, print 12 facts on depreciable items (16K) $10.00

VISA OR MASTER CHARGE

DOCUMAN SOFTWARE BOX 387-A KALAMAZOO, MI 49005 (616) 344-8085

FLOPPY SAVER

Floppy disks and programs are expensive. If you are losing programs and floppy disks due to damaged center holes, FLOPPY SAVER is the answer. FLOPPY SAVER will save disks already damaged and will protect new disks for many times normal life. FLOPPY SAVER will prevent scuffing, crimping and dimpling caused by the hub drive. FLOPPY SAVER is a 7mil mylar reinforcing ring with a super adhesive backing. FLOPPY SAVER kit (25 rings and tool) is only $14.95 for 5") disk, $16.95 for 8", postpaid.

Visa/MasterCharge accepted. Dealer inquiries invited.

TRI-STAR CORPORATION 233
P. O. Box 1727 233
Grand Junction, CO 81502
(303) 243-5200

FINDEX

The manufacturer of the FINDEX portable microcomputer with Bubble Memory seeks exclusive distributors. Financial strength and programming know-how necessary. This is not a franchise. For information contact: FINDEX, Inc., 1625 W. Olympic Blvd., #8080 Los Angeles CA USA.

ANNOUNCEMENT

OMNITEK SYSTEMS — 24 MARCIA JEAN DR., DEPT. K, TEWKSBURY, MA 01876 CALL 617-851-3156

Microcomputing, August 1980 185
Have you ever wanted faster graphics or CLOAD and CSAVE operations on your TRS-80? Perhaps you've felt that it would be nice if programs, both your own and commercial ones, ran faster. For example, if you're a chess buff and own one of the Microchess programs, I'm sure you've wished you didn't have to wait so long for the computer's next move.

The circuit shown in Fig. 1 and the modifications outlined below came about as a result of my wanting to speed up the Sargon chess program. After making a few inquiries, I learned that the slowness of the program was related to the clock frequency of the TRS-80 CPU. I discussed the problem with my friend, Ed Fortmiller, who is a computer programmer. A week later he came up with the circuit shown in Fig. 1.

After deciding not to use any of the spare gates in the TRS-80, we went to the nearest Radio Shack and purchased the needed parts. During the next week I wired the circuit and made the needed modifications. The circuit worked the first time around and has been working perfectly ever since.

The total cost of the necessary parts (if purchased at Radio Shack) should be around $6 or $7. You will need three or four feet of small gauge hookup wire. If you don't have any available, you'll have to spend an additional $2 for a roll of no. 22 or 24 stranded hookup wire.

The Z-80 microprocessor in the TRS-80 (known as the CPU) operates on a clock frequency of 1.774 MHz. By changing that frequency to 2.66 MHz you effect a 50 percent speed-up in the overall operation of your TRS-80. Scott King's article ("TRSpeed-up," Microcomputing, September 1979, p. 138) suggests simply installing a manual switch to change the Z-80 clock frequency. However, the problem with this method is that you can't switch frequencies after power-up, because the Z-80's operation is interrupted and the TRS-80 comes to a standstill. The only way to get it going again is to turn the power off and start over.

Manual switching is a problem because the TRS-80's dynamic RAMs must be refreshed periodically by the Z-80 to remember the data stored in them. If the Z-80 is interrupted for more than one millisecond, the RAMs will not be refreshed and will forget everything they know! . . . and the TRS-80 will cease to function.

So while manual switching will get your TRS-80 running at 2.66 MHz, you won't be able to run any of your old programs or any commercial programs since they will not load at the new clock frequency. Nor can you load them at 1.774 MHz and then switch to 2.66.

The Circuit

To simplify matters, let's say that the circuit is an electronic switch. It performs the same function as the manual switch referred to earlier and even uses a manual switch.

In this case, however, S1 does not actually switch the clock frequency. It has that effect, but the actual switching is done electronically by two integrated circuits (ICs), 74LS76 and 74LS00. Although the latter IC (hereafter referred to as Z2) is shown as three separate units, it is a single IC.

As can be seen from Fig. 1, Z2 has two separate clock signals coming into it— one from pin 12 of Z56 and one from pin 8 of Z56. The position of S1, which is connected to the 74LS76 (hereafter referred to as Z1), determines which of the signals appears at pin 8 of Z2 and is passed on to Z72. The output of Z72 goes to the Z-80. Whenever S1 is operated, the switching is done so quickly by Z1/Z2 that neither the Z-80 nor the RAMs are adversely affected. That means that you can change the speed of your TRS-80 after power-up without having to worry about the RAMs' losing their data.

For example, you can load in any program and switch to the 2.66 clock frequency, and the program will run 50 percent faster. You can even change speed while a program is being executed. You can also CSAVE any program that is in the TRS-80's memory at the faster speed so that the next time you wish to CLOAD that program you can do so at the faster speed, thus taking considerably less time.

A schematic diagram of the TRS-80 is helpful (although not necessary) as you undertake the modifications to be described. A complete wiring diagram of the TRS-80, plus other useful information, can be found in the TRS-80 Microcomputer Technical Reference Handbook, available at Radio Shack stores.

Although the modifications to the TRS-80 and the wiring of the circuit shown in Fig. 1 are simple and easy to do, I do not recommend that a novice undertake these modifications unless
he has a more experienced friend looking over his shoulder. In writing this article, I have assumed that the readers who decide to undertake these modifications have some past experience working with electronic circuits. Thus, there are no detailed instructions for wiring the circuit. I assumed that you could do the wiring from the diagram.

The modifications described below apply to both Level I and Level II machines, 4K or 16K. You may have difficulty if your TRS-80 has a numeric keypad because it may be difficult to find a convenient place to mount the circuit shown in Fig. 1. The best thing to do is to remove the top cover of your TRS-80 and determine what space is available.

The changes described in this article, or any similar changes, will void the 90-day warranty on your TRS-80. For that reason, you may wish to wait until that period is over before modifying your unit.

**Modification Steps**

1. Remove from the bottom of the TRS-80 the six screws that hold the unit together, carefully labeling the holes and the screws with masking tape to make sure you return each screw to the proper hole later. The lengths of the screws vary. After turning the unit right side up again, remove the top cover. You now have access to the foil side of the logic board where several modifications will be made.

2. Locate Z56 (74LS92). If you have a Level II machine, gaining access to the desired pins may be difficult since in some TRS-80s the piece of foam supporting the Level II hardware is glued to the board right over the pins of Z56. If so, carefully lift the foam away with a sharp knife so that you can get to the pins and the necessary trace.

3. Locate pin 8 of Z56 and the trace that leads from it to a feed-through hole that is covered with solder. Carefully cut this trace with a knife or other appropriate tool. Make sure that the trace is completely severed. Carefully remove any metal particles that may result from cutting the trace.

Now solder an eight-inch piece of hookup wire to the section of the trace going to pin 8. Solder another piece of the same length to the section of the trace going to the feed-through hole. If it’s difficult to solder to the trace, you can solder the wires to pin 8 and the feed-through hole, respectively. The free ends of these wires will be connected later.

4. Locate pin 12 of Z56. Solder an eight-inch piece of hookup wire to this pin. After you’ve made the connection, carefully examine the nearby pins and traces for solder bridges.

5. Turn the logic board over so that you are looking at the component side. Keep the keyboard close to its spacers above the logic board so you don’t put any strain on the connection between the two boards. The plastic assembly holding the power/video/tape jacks should be on your right as you look down at the board.

6. Locate Z43. (Each IC has its number printed on the board to the right of it.) The pin nearest to you on the right side of Z43 is pin 1. The next pin – on the same side, going away from you – is pin 2. Solder a 3 inch piece of hookup wire to this pin.

Now locate Z56. (It may be partly hidden by the ribbon cable from your Level II hardware.) The pin nearest to you on the left side of Z56 is pin 14. Solder the free end of the wire from pin 2 of Z43 to pin 14.

7. Locate the video jack. Immediately behind it are two blue electrolytic capacitors – one mounted horizontally and the other mounted vertically. On either side of the smaller, vertically mounted capacitor are two transistors (black, molded plastic body). The one on the left is Q2.

Right behind Q2 are four small resistors. The one farthest from Q2 is R30 (47 Ohms). Connect an 8 inch piece of hookup wire to the right lead of R30. Feed the other end of this wire through the hole in the board between the video and tape jacks. This lead will later be connected to the +5 volt point that will supply voltage to Z1 and Z2.

This completes the wiring on the component side of the board. Turn the board over so that you are again looking at the foil side.

8. Locate the power jack. Just above the jack are three terminals covered with solder. Solder a six-inch piece of hookup wire to any one of them. This completes the modifications on the TRS-80 logic board.

**Wiring the Small Circuit Board**

The next step is wiring the circuit in Fig. 1. I did not include any step-by-step instructions for wiring this circuit. If you are unable to do this, persuade a friend to do the job for you, send me $1 for detailed step-by-step instructions or forget this article and purchase one of the TRS-80 speed-up boards advertised elsewhere in this magazine.

The circuit of Fig. 1 can be wired on an experimenter’s PC board (RS 276-151) or on a small piece of IC perfboard. If you choose the latter, you can use RS 276-1394, which is much larger than necessary, but you can easily cut a 2½ X 2½ inch piece from it. Such a piece is adequate to hold the necessary components.

Whether you use perfboard or a PC board, use sockets for the ICs. If you opt for a perfboard, be sure to purchase the sockets with long pins (RS 276-1993). By bending the pins at right angles to the perfboard, the socket can be firmly mounted on the board.

Connections must be made to other pins (not shown in Fig. 1) on both Z1 and Z2. On Z1, pin 5 is connected to +5 volts and pin 13 is grounded. Pins 1, 4, 6, 9, 12 and 16 are all soldered to a common tie point and connected through a 1k resistor (R3) to +5 volts. On Z2, pin 14 is connected to +5 volts and pin 7 is grounded.

The most convenient place to mount S1 is on the right side, top half of the TRS-80 cover, about 5 1/2 inches from the rear and about 1/2 inch from the lower edge of the top half of the cover. Exercise great care in drilling the mounting hole for S1. Begin with a small drill, preferably 1/16 inch, and work up gradually to the desired hole size. I used nine or ten bits to achieve the desired hole size, thus avoiding any possibility of cracking the plastic cover.

**Final Steps**

After you’ve completed the wiring of the small circuit board and drilled the mounting hole for S1, mount the board in a convenient spot on the foil side of the TRS-80 logic board. This can be best done by following the method used for securing the Level II hardware to the logic board.

Take a piece of the soft packaging material that came with your TRS-80, cut it to ap-

---

**Table 1. Parts list.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>4.7k, 1/2 Watt carbon resistor</td>
<td>5 percent</td>
</tr>
<tr>
<td>R2</td>
<td>4.7k, 1/2 Watt carbon resistor</td>
<td>5 percent</td>
</tr>
<tr>
<td>S1</td>
<td>SPDT subminiature toggle switch</td>
<td>(RS 275-613)</td>
</tr>
<tr>
<td>Z1</td>
<td>74LS76 Schottky IC</td>
<td>(RS 276-1921)</td>
</tr>
<tr>
<td>Z2</td>
<td>74LS500 Schottky IC</td>
<td>(RS 276-1900)</td>
</tr>
</tbody>
</table>

---

**Fig. 1. Modification circuit.**

---

Microcomputing, August 1980  187
PSG-80—implements what we believe to be the most powerful single chip music and sound synthesizer available today, the General Instruments AY-3-8510. This LSI can simultaneously produce 3 different tones each at a different volume. Plus, it has envelope and noise generators for producing more complex sounds. PSG-80 also contains its own on board amplifier. Requires 2 ports.

MSL—is a Music and Sound effects Language which enables everyone to quickly utilize the powerful resources of the PSG-80. The Language was written to support many PSG-80's simultaneously and contains many special purpose statements, plus many traditional programming structures such as nested loops.

PPI-80—utilizes Intel's 8255 to provide three parallel I/O ports for the TRS-80 and can be connected via the screen printer location on the expansion interface or to the expansion bus at the rear of the keyboard.

PSG-80 plus MSL ........................................ 149.00
PPI-80......................................................... 119.95

Approximately the same size as the circuit board and then glue this piece of material to the bottom of the board. Once the glue has set, apply glue to the bottom side of the foam and press it firmly against the logic board.

Mount S1 (horizontally or vertically) in the hole drilled earlier. Tighten the mounting nut enough to hold S1 firmly in place, but do not overtighten it.

To protect the computer will be in the speed-up mode when pin 2 of Z1 is grounded.

Solder the wire from pin 8 of Z56 to pin 5 of Z2. Cut away any excess wire. Now solder the wire from the feed-through hole to pin 8 of Z2. Cut away any excess wire. Next solder the wire from pin 12 of Z56 to pin 1 of Z2.

Solder the wire from R30 to the +5 volt point on the small circuit board. Next solder the wire from the ground terminal at the rear of the board to the ground terminal on the small circuit board.

This completes the modification of your TRS-80. Before powering up your unit, I suggest that you (or a friend) carefully review the modifications to the logic board and the wiring of the small circuit board.

Your TRS-80 will now operate at either 1.774 MHz or 2.66 MHz. To get some idea of the improvement in speed of operation, load one of your programs in at the normal speed, keeping track of the loading time. Now flip the switch to the faster speed and CSAVE the program. Next reload the program (without touching the switch), noting the loading time. Even without looking at a watch you will notice the asterisk blinking much faster.

Another possibility is to enter the following two-line program and measure the time between the appearance of the words GO and STOP.

10 CLS: FOR J = 1 TO 200: NEXT J: PRINT "GO"
20 FOR N = 1 TO 5500: NEXT N: PRINT "STOP"

You’re measuring how long it takes the computer to count from one to 5500, and you’ll discover that with the Z-80 running at 2.66 MHz it counts 50 percent faster than at 1.774 MHz.

---

SURPLUS ELECTRONICS

IBM SELECTRIC BASED I/O TERMINAL WITH ASCII CONVERSION INSTALLED $645.00

- Tape Drives
- Cable
- Cassette Drives
- Wire
- Power Supplies 12V15A, 12V25A, 5V35A Others,
- Displays
- Cabinets
- XFMRS
- Heat Sinks
- Printers
- Components

Many other items.

WORLDWIDE ELECTR. INC.
130 Northeastern Blvd.
Nashua, NH 03062

Phone orders accepted using VISA or Master Charge
TOLL FREE
603-889-7661 • 1-800-258-1036
Selling Kilobaud MICROCOMPUTING, the most complete journal of microcomputing, brings the computer enthusiast through your door. Once he's in your store, you can sell him anything.

For information on selling Kilobaud MICROCOMPUTING, call 603-924-7296 and speak with Ginnie Boudreau, our bulk sales manager, or write to her at Kilobaud Microcomputing, 80 Pine Street, Peterborough, NH 03458.

Our dealers are telling us that Kilobaud MICROCOMPUTING is the hottest-selling computer magazine on the newsstand, so call today and join the ranks of dealers who make money with KM.

**Instant Software is looking for more good programs.**

YOU may be sitting on a gold mine. The chances are good that you have developed programs for personal, hobby, business or educational use. Such programs could become best sellers in our software line and bring you a substantial monthly royalty check.

Instant Software can save you the time and expense of trying to sell your own software. Our experienced staff of top-notch programmers, marketing and advertising specialists, writers, editors and artists can package your program and make it stand out in the crowd. And... Instant Software's proven track record of steadily increasing sales means larger royalties for you.

Our advertising campaign will put your program before the readers of Kilobaud/Microcomputing, the Microcomputing Industry Newsletter, 80 Microcomputing, and other national publications. Our aggressive sales force has put Instant Software into more than 250 computer stores across the United States and in several foreign countries. Wherever there are microcomputers, there's Instant Software.

We are looking for good business, utility and education programs on almost any subject. Specifically, for business, we are looking for General Ledger, Cost Accounting, Accounts Receivable/Accounts Payable, Inventory, Order Entry and Payroll programs. They should be interactive, operate from a common data base, and feed into a Trial Balance Sheet and a Profit and Loss Statement. For the utilities, we'd like any system software that is useful, solves problems and will save time and/or effort for other programmers. For educational software, we want tutorial programs, educational simulations, administrator/teacher aids, mixed-media presentations, interactive learning and anything else that's creative and exciting to potential students. Those students can range from preschool age to adults; the subject matter can be anything that you know well. In short, send us software that can solve real problems for the final user.

We are presently looking for software for the following systems: TRS-80 Level II and Model Z, Apple, Heath H-8 and H-89, OSi C1P, Atari, TI 99/4A, PET and CP/M.

Submitting programs is easy! Simply send us a disk containing your program or a cassette tape with your program recorded twice on each side. Be sure to include a doublespaced, typewritten explanation of (1) what the program does, (2) how to load and use it, (3) what computer it will run on, and (4) who might be interested in buying it. We'd also like a program listing as well as definitions of all variables used in the program. Include a sample data file if necessary. Then send it to:

Instant Software, Inc., Editorial Department
Peterborough, NH 03458

Our reviewers will examine your programs and (assuming we like what we see) you'll be contacted regarding the royalty arrangements.

If you want additional information about Instant Software, send us your name and address. Ask for our software documentation guide, which explains the submission procedure in greater detail.

The market for expertly written and documented software is wide open, and there is a huge demand for programs to keep up with the expanding sales of microcomputers. Get a piece of the action for yourself!
File Dump For FLEX

Become acquainted with your disk files; FD prints them in both ASCII and hex.

Phil Hughes
PO Box 2847
Olympia WA 98507

FD is a program that prints the contents of disk files in both ASCII and hexadecimal. I originally wrote FD to determine the cause of an incompatibility between the TSC Text Editor and Ed Smith's Macro Assembler. FD is similar to a memory dump in that once you have it, you will find all kinds of reasons to use it.

Before I talk a lot about FD, let me talk a little about FLEX, which is an operating system written by Technical Systems Consultants. It was designed to run on a Southwest Technical Products 8800 computer system with either a mini-floppy or full-sized floppy disk. A new version that runs on a Southwest Technical Products 8800 computer system is now available. Rumors are that FLEX will also support the hard disk, which is soon to come from SWTP. FLEX does a lot for the user, and, with some additional utility programs, it can do a lot more. FD is such a utility program.

FD should be installed by saving its binary as FD.CMD on your system drive. Note that FD is loaded into the FLEX utility command area, and therefore it must be saved using the SAVE.LOW command. Once installed, it can be run by entering FD filespec, where filespec is a standard FLEX file specification, such as 1 myfile.TXT. The file will be printed out in hexadecimal, and all printable bit combinations will also be printed in ASCII on the right.

Listing 1. FD printout.

Head Fast End of File

Listing 2. FD and FLEX.
tion of FD. The left-most column is a relative offset address within the file. This is followed by 16 bytes of data displayed in ASCII. Any nonprintable character is replaced by a question mark (?). Listing 2 is FD assembled from FLEX 2.0. It was assembled using RRMAC from Ed Smith's Software Works. The significant difference between the RRMAC format and Motorola assembler format is in the formation of constants. For example, the constant hexadecimal 1234 is represented by X'1234' instead of $1234. The object code generated by RRMAC is relocatable—in other words, it can be loaded anywhere in memory.

This relocation is performed by another Ed Smith program called a loader. For those who wish to use standard Motorola assembler format, the directive ORG $A100 should be added after line 134, and the constants should be changed back to the Motorola format.

Lines 6 through 133 have been included from another file. These lines are a set of equates for all the FLEX interfaces that I feel I might use.

Although most of these equates are never used in FD, it ensures that all of my programs use the same names for the FLEX interfaces. This way, if TSC releases a new version of FLEX with some of the entry points changed, I will only have to change the include file and then reassemble all my routines.

Lines 135 through 150 open the file that is to be dumped. GETBLK (line 151) is the start of the processing loop. This routine gets characters from the file and checks for a read error. DLINES (line 165) is the beginning of the routine that prints the data. Routine DONE (line 212) closes the file and returns to FLEX at its warm-start entry.

If an I/O error occurs, the routine FILERR will report the error, close any open files and return to FLEX. Note that FD has no way to determine where the last piece of meaningful data is located in the file; therefore, a normal termination is the message READ PAST END OF FILE.
Breakout Box

Accessing an extra parallel I/O port is easy with this simple hardware project.

Don Walters
2849 Verle St.
Ann Arbor, MI 48104

It was inevitable that microcomputers would find their way into the ham shack, as the two hobbies overlap. Although most of the microcomputers will perform dedicated functions such as CW, RTTY, antenna aiming for satellite work and slow-scan TV, a few will end up with an extra parallel I/O port or two. The spare I/O port will tempt its owner to experiment with bit pushing and pulling in many projects.

Every new technology brings new needs and problems with it. Such is the case with the microcomputer and its spare parallel I/O port. The problem is how are you going to get at the bits and signals on it. Just run wires out near where you need them, right?

Photo 1 demonstrates that this method works. However, a few weeks of working with it this way will quickly change your mind about how nice the method really isn't. It won't be long before you decide that there must be a better way to access the bits and signals of the parallel I/O port.

A Better Way

While watching a potential vendor use a breakout box to make his printer work with our minicomputer-based word-processing system, I realized that this technique could be applied to a parallel I/O port as well. This would allow quick accessing of the bits and signals of the parallel I/O port of my Imsai 8080.

I thought about how I could set up such a convenience and worked the whole thing out. By the end of the evening I had put the parallel I/O breakout panel together, and had it debugged.

Photo 2 shows the result of my efforts. Also note in the photograph the use of a standard connector plug for connecting the breakout panel to the parallel I/O port connectors on the back of my Imsai 8080. The constant use of standard connectors on my system has saved me many headaches over the past couple years.

Construction

The breakout panel is simple to build and should take about an evening to put together. Your total cost will be about $15. Fig. 1 gives the general construction details on how to build the breakout panel.

The first step is to cut a piece of aluminum or hardboard to the size you want your breakout panel to be. If you want to duplicate my breakout panel use the dimensions given in Fig. 1.
The hardest step is to cut the Global Specialties' QT47S or equivalent prototype strip (available from several of the mail-order houses that advertise in Microcomputing, as well as from Radio Shack and possibly local electronics outlets in your area) in two, lengthwise. You want to separate the two halves of the prototype strip so that you end up with two half-strips.

The prototype strip is made of soft plastic and can be cut with a heavy knife. Exercise care in cutting and make several passes over the same cut before you cut through the prototype strip's center. Alternately, you can use a small hobby-type hacksaw to cut the protostrip in two.

Lay half of the prototype strip and the cable clamps on the base and mark where you will have to drill their mounting holes. Use press type lettering to label the holes of the prototype strip as to which bit or signal is available at that point on the prototype strip. Photo 3 shows how I labeled the various holes on the prototype strip. Cover the lettering with a strip of clear contact paper to protect it.

Assemble all the parts onto the base using six to 32 machine screws and nuts. The easy way to mount the prototype strip is to tap the holes on either end with a 6-32 tap. Remember to leave the cable clamps a little loose, since they will not be tightened until all the wires have been attached to the prototype strip.

After all the components are mounted to the base, attach the rubber feet.

The last step is to attach the wires coming from the parallel I/O port to the modified prototype strip. Number 24 stranded wire is about the right size. Cut about a quarter of an inch of insulation from the end of each wire, then twist the wire tightly together. Tin each wire with a little solder and insert each wire into its hole in the prototype strip.

Tighten the cable clamp screws so they provide strain relief for the wire bundle going to the parallel I/O port. Make sure the various wires, attached to the prototype strip and labeled as to their bit or signal, actually carry that bit or signal from the parallel I/O port.

That's all there is to building this simple project. ■
Forgot to renew? Need a gift in a hurry? Want to order a book? Remedy the situation immediately at our expense. Call us toll-free and let us help you.

[800] 258-5473

MACO MICRO MODULE
...TRS-80 USERS...
Expand the horizons of your Level II R-S system with the M3 interactive interface.

HARDWARE FEATURES:
• Two 8-bit hand-controller input ports.
• 1/10 second interrupt generator for use as a timer or Real-Time clock.
• Audio generator with speaker.
• Connects to expansion connector with provided cable.
• Self-contained power supply.
• Presents only one LSTTL load on the TRS-80 Bus.

SOFTWARE FEATURES:
• Software packages include:
  TRS-80 Brickyard
  Micro-Organ
  Real-Time Clock
  Comput-a-Sketch
  Complete programming instructions for BASIC and Assembly Language provided.

All M3 units are factory burned in and CPU tested. Please specify memory size when ordering. Dealer inquiries are invited... PRICE: $129.95.

Ordering: Money Order or Check—we pay freight charges, VISA, MC, or C.O.D.—freight added to bill. On charge cards please include complete number as well as your complete address.

MACO MANUFACTURING
1303 Airways Blvd. • Memphis, Tenn. 38114
Telephone (901) 453-9510

"TRS-80" is a trademark of Tandy Corp.

EXIDY Sorcerer
16K $1,089
Commodore
Pet 16K $799

Call or write for price list with comparable savings on 32/48K models and peripherals.

Micro Computer Warehouse
3200 La Habra Way
Orange, CA 92667
(714) 758-9079

• Computers are fully tested and burned in for 48 hours.
• We respond promptly to all inquiries and orders. Send $1 for catalog, refundable with order.
• Cash price—add 2% for Visa/Mastercharge. Price subject to change without notice.

C-10 SHORT CASSETTES

Qty. Price
10 $0.75
50 $0.65

Premium tape and cassettes acclaimed by thousands of repeat order microcomputer users. Price includes labels, cassette box and shipping in U.S.A. VISA and M/C orders accepted. California residents add sales tax. Phone (415) 969-1604.

Microsette Co.
475 Ellis Street
Mt. View, CA 94043

SYSTEM EXPANSION FOR THE TRS-80

$69.95 (PC BOARD & USER MANUAL)

- Serial RS232C 300 bps L/O
- Floppy controller
- 2k bytes memory
- Parallel printer port
- Dual cassette port
- Real-time clock
- Screen printer bus
- Onboard power supply
- Software compatible
- Solderless silk screen
- 123

LNW RESEARCH
1712 Hallowell St. Irvine, CA 92714

1-800-253-6401

TRS-80 is a registered trademark of TANDY CORPORATION.

Microfilm copies of Kilobaud Microcomputing are available and may be purchased from University Microfilms, a Xerox company, 300 N. Zeeb Rd., Ann Arbor MI 48106.

Microcomputing, August 1980
**COMPUTER ACTION**

Send for our FREE PRICELIST with very low prices on disks, tapes, and many other items for COMPUTER HOBBYISTS AND BUSINESS USERS

Send name & addr. to Computer Action P.O. Box 119 Brooklyn, N.Y. 11236

**IEEE 488 & RS232 Switching Units**

GS232 units are ideal for interfacing and monitoring various peripherals with computers, modems and printers. The GS232 units allow the sharing of a line printer between two or three CPUs or terminals. All GS232 units are bi-directional:

- GS232-1 switches 9 pins (2, 3, 4, 5, 6, 7, 17, 20)
- GS232-24 switches 24 pins (2-25)
- GS232-P4 switches 24 pins (1-24)
- All connectors are standard 25 pin DBS type
- Coupling options: GS232-232 & 2-P54 allow interfacing of more than 3 devices
- Standard size 10.0" x 7.0" x 3.0"
- High reliability — 1 year warranty

Improve upon optional monitoring capabilities. IEEE 488 bus & RS232 interface cables are a stock item.

$129.00 single units
Quantity discounts available

**ORDER FROM:**
Giltronix, Inc.
450 San Antonio Ave., Suite 44
Palo Alto, CA 94306
415-493-1300 / 493-2199

---

**DISK DRIVE/CAT SALE**

Shugart SA801A for RS MOD II ONLY

$485

Hozeltine 1000 (unused) $499
Shugart SA400... $279
Pertec FD200... $279 – FD250... $359
MPI DS1... $279 – DS2... $349
SA801A w/PS/Cab... $750
Dual Drives w/PS/Cab... $1640

**LIMITED QUANTITIES**

MTI
3304 W. MacArthur Blvd.
Santa Anna, CA 92870
(714) 979-9923

---

**THOMAS PRINTERS**

Send for our FREE PRICELIST with very low prices on disks, tapes, and many other items for COMPUTER HOBBYISTS AND BUSINESS USERS

Send name & addr. to Computer Action P.O. Box 119 Brooklyn, N.Y. 11236

---

**STANDARD DRIVES**

Disk Drive Prices

Hozeltine 1000 (unused) $499
Shugart SA400... $279
Pertec FD200... $279 – FD250... $359
MPI DS1... $279 – DS2... $349
SA801A w/PS/Cab... $750
Dual Drives w/PS/Cab... $1640

**LIMITED QUANTITIES**

MTI 3304 W. MacArthur Blvd.
Santa Anna, CA 92870
(714) 979-9923

---

**CARTESIAN MULTIPLEXORS**

Send for our FREE PRICELIST with very low prices on disks, tapes, and many other items for COMPUTER HOBBYISTS AND BUSINESS USERS

Send name & addr. to Computer Action P.O. Box 119 Brooklyn, N.Y. 11236

---

**HMEGA WHOLESALE PRICES**

**PRODUCT SPECIAL OF THE MONTH!!**

HMEGA WHOLESALE PRICES

**“WHOLESALE COMPUTER PRICES”**

DIRECT TO THE PUBLIC
12 Meeting St., Cumberland, R.I. 02864

**INTERTEC SUPERBRAIN**

32K RAM - $2449.00
64K RAM - $2649.00

Prices valid July 15 – Sept. 1, 1980

---

**OMEGA TOLL FREE 1-800-556-7587**

OMEGA OFFERS THE BEST DELIVERY AND PRICE ON:

APPLE - Atari - TRS-80 MODEL II - INTERTEC -
TI 810 - HEWLETT-PACKARD-85 - SOROC -
COMMODORE - NEC - QUME - CENTRONICS

OMEGA sells only factory fresh, top quality merchandise to our customers. OMEGA will try to match any current advertised price with similar purchase conditions. Before you buy anywhere else - be sure to call OMEGA Sales Co.

1-401-722-1027 or

---

**CALL TOLL FREE FOR OMEGA’S PRICE!**

OMEGA OFFERS THE BEST DELIVERY AND PRICE ON:

APPLE - Atari - TRS-80 MODEL II - INTERTEC -
TI 810 - HEWLETT-PACKARD-85 - SOROC -
COMMODORE - NEC - QUME - CENTRONICS

OMEGA offers the best delivery and price on:

APPLE - Atari - TRS-80 MODEL II - INTERTEC -
TI 810 - Hewlett-Packard-85 - Soroc -
Commode - NEC - Qume - Centronics

OMEGA ships via UPS, truck, or air. COD’s, VISA, Mastercharge accepted.

“A member in good standing of the better business bureau.”

---

Reader Service index—page 241

---

Microcomputing, August 1980

197
BASIC Programming Tips

Don't sacrifice efficiency for faster program development.

Alfred E. Williams
1551 Oceanaire Dr.
San Luis Obispo, CA 93401

Most microcomputer BASIC programmers eventually run into applications that require faster execution speed or less memory to be practical. The trend in the computer industry is to favor faster development of more reliable and maintainable programs at the expense of efficiency, except in time-critical applications. With a little thought, the programmer can develop some techniques to promote execution efficiency without affecting the speed or clarity of his programming.

The goals of reducing required memory and increasing execution speed often conflict. For example, the simple bubble sort needs minimum storage in addition to the input-output array, but is very time-consuming. More sophisticated sorts (e.g., Shell sort) execute many times faster but require more storage. I'll focus on tips to improve execution speed.

There are many different implementations of BASIC—integer or floating-point, compiler or interpreter—with varying degrees of efficiency. If you're lucky enough to have a choice of software for your micro, shop around. If efficiency is critical for you, you may be better off investing in a commercial, enhanced BASIC interpreter or compiler rather than the one supplied by your machine's manufacturer. Remember that compilers almost always have a speed advantage over interpreters in actual execution. The requirement for a compile phase may be frustrating, however, if you're used to freely twiddling with your program during debugging.

Consider your choice of storage devices for your program and data files. Generally, direct access devices (floppy and hard disks) provide faster retrieval of data than the various kinds of tape devices, particularly when records are to be fetched from random locations in the file rather than in the sequence they were loaded. Unfortunately, the average cost for both disks and drives is higher than the cost for tapes and tape devices, although the appearance of some new, less expensive disk devices recently has provided some hope of an affordable disk for all micro users.

Watch for
Critical Inner Loops

The majority of execution time in non-input/output (I/O) bound programs is confined to less than 5 percent of the source text. Donald Knuth, in his writings, points out that program execution speed may largely depend on the speed of one or more short loops. He calls these critical inner loops.

Look for these critical loops in your program, and make sure that all statements in the loop are executed there. For example, if the value of a variable is not changed in a loop, initializing it there will waste execution time since it will be performed several times instead of once. Execution time may also be saved by doubling up the calculations in a loop. Assume you want to initialize a 40-element array to zero. One way to do this might be:

FOR I = 1 TO 40: A(I) = 0: NEXT I

Almost half the overhead of the FOR loop, however, could be saved (at a minor expense in memory) by writing the initialization this way:

FOR I = 1 TO 20: A(I) = 0: A(I + 20) = 0: NEXT I

Sometimes it is beneficial to remove the loop entirely and process using straight-line logic. If your array was four instead of 40 elements, it might have been better to initialize each element of the array individually, rather than use a FOR loop. You must evaluate the trade-off between execution speed, memory and programming ease.

All of the techniques discussed below are especially important in critical inner loops. If you repeat calculations unnecessarily, the loop will multiply its importance many times over a similar error outside the loop.

Repeating Calculations Unnecessarily

Execution efficiency can be improved by setting a variable to the result of a calculation and using that variable rather than repeating the calculation for later testing and computation. Consider the following statement:

IF A*B/C < D THEN E = A*B/C + 1

Notice that A and B must be multiplied and divided by C twice. This could be avoided by replacing the statement by the following:

Z = A*B/C: IF Z < D THEN E = Z + 1

Once again, the trade-off is between execution speed, memory and program clarity. Notice that the memory saved in the source text may exceed the memory required to store the new variable if the calculation is complex, depending on the amount of compression your BASIC does in storing the program. You sacrifice program clarity because you use a variable to store an intermediate result, which may make the meaning of the calculation harder to see. Because BASIC allows only one-letter variable names, using a variable this way may also be a luxury you can't afford, but keep the tip in mind for your less complex programs.

Avoid Unnecessary Subscript Calculations

If your BASIC has array variables, you have a technique that, along with FOR loops, allows you to conveniently store and manipulate variable values. Remember, however, that BASIC must spend some time evaluating the subscript and locating the position it points to in the array.

This time is multiplied with multi-subscripted variables. For this reason, it's more efficient to move the value from the subscripted variable to a new un-subscripted variable if the same location in an array is used more than once. Example I shows what I recently found in one of my programs. In this case, I asked BASIC to evaluate two
subroutines four times instead of once. Since this occurred in a time-critical inner loop, I saved some time by changing it to Example 2.

Avoid Unnecessary Data Conversions

If your BASIC supports more than one data format, you should find out how these formats are used by BASIC for testing and computing. If you should avoid needing the computer to convert between them unnecessarily. For example, if fixed-binary numbers are converted to floating point before being tested against, or used in, arithmetic operations with other floating-point numbers, you may want to move the value of a fixed-point variable to a floating-point variable used instead in expressions with other floating-point numbers. Otherwise, your BASIC has to convert the fixed-binary number to floating point every time it occurs in a test or computation with floating-point numbers.

Avoid Unnecessary Transfers of Control

There are many legitimate reasons for using GOSUB in a program; the two most important are for clarity and to use a common section of code without duplication from several different places in the program. Using the GOTO is more controversial, particularly among structured programming advocates. In any case, transfers of control do require CPU time, and you should avoid bouncing around in your program unless it’s necessary.

The top-down development approach of structured programming uses subroutines to allow the major functions of the program to be developed first. This leaves development of the detailed processing logic for each functional program block after the structure and relationships among the blocks are designed. If you use this approach, sometimes you’ll find that some subroutines are called from only one location, and including them in the mainline of the calling block won’t seriously affect its clarity. In these cases you should consider eliminating the subroutine and putting its code back into the mainline logic of the caller.

If you’re not convinced about structured programming, you’re even more likely to have unnecessary GOTOs between sections of your program. (The worst case—lots of inexperienced programmers make this mistake—is:

```
100 GOTO 200
200 PRINT "DUMMY, YOU WENT TO THE STATEMENT IMMEDIATELY FOLLOWING THE GOTO"
```

As you write each GOTO, think whether the routine you’re jumping to could be sequentially included instead of inserting the GOTO. If so, do it!

Consider Assembler Subroutines

Finally, if your computer not only has BASIC but also an assembler, or if you are skilled in machine language and your BASIC has an interface, you should consider functions done repeatedly, such as those in critical inner loops, for conversion to Assembler. If properly written, Assembler routines will usually outperform both the BASIC interpreters and compilers. The problem is that Assembler routines are harder to write, debug and maintain than similar routines in BASIC. For this reason, unless you’re a computer freak (I am) or a dedicated masochist, I recommend you consider Assembler primarily for repetitive time-critical functions only.

It may seem that the execution time saved by each of these techniques will give a small advantage compared to the extra effort required to write your program. I certainly don’t want to suggest that you significantly add to your development time in pursuing small efficiencies. Even so, I think you’ll find that if you keep the principles in this article in mind, they will eventually become automatic for you; the overall time savings per program execution could be significant.
Program Patching For I/O Flexibility

The author describes a technique for enhancing poorly documented software.

Ken Barbier
Borrego Engineering
PO Box 1253
Borrego Springs, CA 92004

Hey! Did you hear the one about the computer nut who went out and bought an old 5-level TTY and built his own interface for it so he could have nice hard copies of his programs? And then he found out that the supplier of his favorite version of BASIC would not disclose the source listing of the program so that our hobbyist friend could make the changes necessary to use his new printer! Well, he shouldn't be feeling lonely. There are a lot of us who have been in a similar situation, wanting to make enhancements in undocumented software.

There is a way to add all sorts of nice things to the programs we have purchased from tight-lipped vendors, if only we know the locations in the programs that are used to control the input and output devices. Fortunately, these locations are usually not kept secret. Even if they were, there are ways to implement hardware traps to learn the location of the hardware-controlling routines. But the subject of hardware traps is beyond the scope of this article.

Start Simple

Let us consider the simpler problem first. Suppose we want to add a hard-copy device to a BASIC-language system consisting of a CPU, a TV display terminal and an audio cassette tape drive. We have been using a BASIC compiler that allows us to save and load programs through the audio tape interface. But there is no provision for transferring the output from the TV terminal to the hard-copy device whenever we want to, so that we can save either program listings or the results of computations.

Of course, if we know the locations in BASIC that handle the input and output operations, we can always change the I/O port assignment and status word bit-pattern mask by flipping front-panel switches (if any exist on our system!) every time we want to switch from our nice quiet TV display to a noisy printer, but this is frustratingly time consuming and error prone.

Let us instead incorporate a way to switch our output from the TV display to the hard-copy printer and back with a single console keystroke, which we will make invisible to the main program. This method requires only that we know the location of the console input and output driver routines.

We will also need a little memory not accessible to the main program. This can be RAM that is not contiguous with the main memory (so BASIC doesn't know it's there), or we can reserve a little space at the top of main memory when BASIC asks "MEMORY SIZE?" (If the program you want to modify does not incorporate this feature, use "hidden" RAM, which is separated from the main storage.)

With the method described below, we can reassign any number of I/O devices at will and can even assign blocks of RAM memory as "mass" storage, making multi-pass assemblers run faster than they would in a disk-oriented system!... with no tape to rewind between passes.

Patching the Main Program

Somewhere in our main program is a console input routine that looks something like that shown in Example 1, or would, if we had the source listing. Since we don't, we will have to hand disassemble the code around our input routine to figure out the exact conventions used for reading the keyboard status, reading the keyboard data and passing it back to the calling program. Whatever the case, do not execute the code at this location. Instead, substitute a JUMP instruction to our input patch.

In a stack-oriented microprocessor this will leave the main program's calling address on the top of the stack. For register-oriented micros or minis we will preserve the contents of all registers anyway, so the return convention will not be disturbed.

Our input patch will look for an input character just as our main program did. But now we will not simply return to the calling program. We are going to examine the character to see if it is one of a number of special control characters we are using to implement our device reassignments. If it is, we will execute the reassignment and...
jump back to the input routine to fetch the next operator keystroke. This next keystroke is the one we will send back to the main program. This way, our special characters are never seen by the calling program.

Selecting Special Characters
Any keyboard character that is never used by the main program qualifies as a special control character. These usually include a number of control characters, usually designated by "IT," for example, produced by holding down the CTRL key and pressing a letter key. There are only a few control keys used by most programs, leaving a rather large number to use for our special controls.

For our simple example we will need only two special characters. So we choose "IT" to switch all output to the hardcopy device and "IV" to switch all output back to the TV display. To see how these controls can be used, consider a typical BASIC programming session.

Using the Controls
BASIC is loaded from the cassette tape, and we have keyed in a program that is designed to produce some nicely formatted numeric output (I plan to use this as "Table 1" in a future article for Kilobaud). We try running the program, and the output is garbage. Listing the program on the TV screen 16 lines at a time does not disclose the source of the error, so we need a hard-copy listing to permit examining the program as a whole. We enter the following keystrokes: LIST IT CR, and our program is printed out on the TTY—from the CR we entered last through the "OK" that follows the listing. We now key in "IV" and we are back with the TV as the output device.

Having the entire program to examine at once, we are able to spot the error that was entered while the dog was chewing on our shoelaces. Exiling the mutt from the computer shack, we correct the error, and using the TV display we run the program. This time the output looks good.

So now we roll the old yellow paper out of the TTY, roll in a sheet of nice bond paper, and key in: RUN IT CR, and our Table 1 appears on the TTY, nicely typed out. Don't forget to incorporate enough line feeds following the output to prevent the "OK" from appearing after the printout.

Implementing the Controls
Find the console Input read routine in the main program, as discussed above, and patch in a jump to CNTIN, which is our control input routine. Example 2 is written using Intel 8080 Assembly language, but should be easily convertible to other small machines. CNTIN uses the "IT" and "IV" character codes to toggle a flag. CNTOU is our controlled output routine, which tests the flag to see whether the output goes to the TV display (CRTPT) or the hardcopy device (TTYOU).

The main program will also have to be patched at its output routine with a JUMP to CNTOU. CRTOU and TTYOU are device-specific driver routines for the TV display and the TTY. If the change made to the system is the addition of the TTY as described above, CRTOU will be the same instruction sequence as the original output routine.

Note that in Example 2 CNTOU expects that the character to be output will have been pushed onto the stack on top of the return address. This convention is used by Altair BASIC and is included here as an example of how to handle different conventions. Be sure to use the correct convention for the program you are patching.

The device driver routines themselves are hardware dependent and will vary from one machine to another and from one I/O board to another. The examples given here, therefore, do not include the actual I/O port addresses or status bit values.

Other Applications
Expansions of the same technique can be used to implement enhancements to almost any program. For example, a pair of control characters could be used to implement a pause and continue in any program that continually tests the keyboard during execution. This is handy for slowing things down as they flash by on the TV display.

In another application, after the amount of main memory was doubled in a mini—to make room for more application programs—the extra memory was used as a "mass storage" device for the text editor output and assembler input. The assembler operation was speeded up dramatically. The control input routine was used to direct the text editor output from the usual paper tape "punch" device to the top half of the main memory.

The new control routine took care of placing each output character into the next successive memory location. When the assembler was then loaded, the "IR" was used to "rewind" the source code "tape" by resetting the memory pointer to the start of the buffer. Another control character was used to switch the assembler from the original paper tape reader input to the memory-as-reader routine.

The resulting system would assemble faster than a disk-operating system, at a fraction of the cost of a disk, but of course without the same amount of storage a disk would provide.

Only the I/O driver program locations within the original operating system were known, but then they were all we needed to know to add useful enhancements like these.
Look to Aristol/Polks for reliable, quality products at competitive prices.

IN NEW YORK CITY

OHIO SCIENTIFIC & ARISTO/POlKS FULL STOCK AND SERVICE ON CHALLENGER MICRO-COMPUTERS.

CHALLENGER 69K $399.00
CIP 5" FLOPPY 20K $1250.00
SUPERBOARD CIP $299.00
CHALLENGER (COLOR) CP4 9K $700.00
CIP FLOPPY 4K 5" $170.50
CHALLENGER C6 $295.00
COLOR-DUAL 5" FLOPPY CIP $2895.00
C-5 48K DUAL FLOPPY 8" $4095.00
C-5-3 MEG HARD DISK $12295.00
PLUS ALL SOFTWARE & PERIPHERALS

Mail order invited if machine can be sent back to us for service. 220 volt models available for systems write for quote. Write for free catalog. M/C, VISA, AX CARDS ACCEPTED.

Aristo/Polks 212-279-9034
314 5TH AVE. (32 ST) Y.C., N. Y. 10001
9-30-6/DAILY THURS TIL 9 SATURDAY 11-5

PRODUCTS

Z-80 USERS - would you like to use TRS-80® Software? Our assembled interface and complete documentation allows you to load and interface TRS-80® cassette programs. $30.00.

& COMPURISM? COLOR

GRAPHICS FOR THE S-100 BUS. 16K OF ON BOARD MEMORY CAN BE USED AS RAM. 2.5 OR 4.5MH OPERATING. HIGH RESOLUTION (144 H. X 128 V. PIXELS) WITH 16 COLORS AT THE SAME TIME. NO ADDRESS JUMPS MAKE PROGRAMMING EASY. SOCKETS FOR ALL I.C.'S. FIT $240. A AND T $290

Bare board with documentation $45.

ALL ORDERS SHIPPED COD WITHIN 72 HOURS. 4 MHZ MOD FOR S.O. SYSTEMS. EXPANDRAM 10, 16 CHANNEL A.O. 8 CHANNEL D.A. FOR S-100 BUS. BARE BOARD WITH DOCUMENTATION $30.00.

J.E.S. GRAPHICS P.O. BOX 2752
TULSA, OK. 74101 (918) 742-7104

Apple Owners

VALUABLE FREE CATALOG

Software and Hardware for Business Education Entertainment

Recent Arrival:
APPLE II SERIES. The dearest we have written in the history of the Trash Game. Three different keyboard options. Many available now. The use ofupos can be to lose ofst ays. Need 48K Apple II. Rom Code. $234.95

To order add 5% US $15.00 Foreign Shipping Charges. California residents add 6%. Don't see what you want here. Write we're or call today for your software and hardware catalog.

Open Tuesday-Saturday 9:30-5:30
Cinnamon Plaza Shopping Center
5719 Reseda Blvd., Northridge, Calif. 91324 Dept. 86Y Telephone: (213) 849-5950

Business Software

IBM® 5110 & 5120


Accounts Payable: Good reporting aged reports. Fully integrated to General Ledger. Accounts Receivable: Open item apply payments by invoice or without invoice. Aged reports & statements. Fully integrated to general ledger.


COMPUTER SUPPORT SERVICES, INC. 331 BAY ST. N. Mankato, MN 56001 (507) 625-2205

*IBM trademark of International Business Machines

Micro Discount Service

SORCERER by Edny

280 Processor
Full-size ASCII Keyboard Serial and Parallel I-O
Calculator Style Numeric Pad 30 x 64 Character Display
8K RAM up to 16K RAM 240 x 162 Graphics Resolution
Resident 4K Monitor ROM
$299.00

with 16K RAM $279.95
with 32K RAM $299.95
with 64K RAM $399.95

FREE 12 Video Monitor valued at $149

FREE $100.00 of Software

FREE with 48K RAM $149.95

FREE Software Development Package

Do you need a disk system, software, memory expansion kit, accessories, or manuals for your Sorcerer? Write and find out why we're called a Discount Service.

WE PAY ALL SHIPPI NG AND HANDLING WITHIN THE U.S. Connecticut residents please add 6% sales tax. Shipment starts in 30 days.

198 General Lyon Rd., Eastford, CT 06242
203-974-1214

TRs-80" DISK SYSTEM SUBROUTINES

provided in machine language for use directly from BASIC

BASED ROUTINE: Based on key input, repeats key when held down, selects mode out of EER, BREAK, CLEAR, SPACE, etc. "-> also and when multiple entries are not required. Also looks out of nonnumeric keys for numeric entries. Does not affect TRSDOS operation of I/O. Does not move. Clear unshift gives clear entry function. Clear shift gives

I/O ROUTINE

LARGE INTEGER FUNCTION: Store and recall to disk not only 3 digits a two bytes and 5 digits to two bytes. But also 10. 13. 15. and 17 digits to 3. 4. and 7 bytes respectively. Saves a lot of disk file room

COMPRESSED ALFA: Store up to 8 alphas characters in bytes

LINE PRINTER TEST ROUTINE: To save your TRS-80 hanging up with a non-routine code from our line printer, this routine gives an error message, without destroying the screen contents. ALL THESE ROUTINES fit within less than 10 sectors on the disk $25 for any one routine, $20 for the second and above $50 postage etc required. Money Order.

Ontario residents add 7% sales tax

*Specify 16K, 32K, 48K, NEWDOS, or 15800 when ordering

Harris Data Systems
2390 Eglinton Avenue East, Suite 208, Scarborough, Ontario M1K 2P3

(416) 739-0275

*16K-5 is a registered trademark of Tudor Corp.
CP/M® USERS!
The ED-80 TEXT EDITOR

- $50,000 in Development Costs — Yours for Only $99!
- For all CP/M, Cromemco, TRS-80 Mod II, and North Star Systems.
- Full Screen Text Editor w/Scrolling.
- For all CRT and Video Monitors.
- Features Found only on IBM, CDC, UNIVAC and DEC Systems.
- Field Proven — More than 2 Years.

A Terrific Value — $99.00
Write for Free Color Brochure
Software Development & Training, Inc.
Post Office Box 4511 Dept. K
Huntsville, Alabama 35802
(205) 302-0933

6800-6809
Modem Program
With Disc File Transfer

Instructions and Source Listing $25.00
Disc with source and object, add $10.00
Specify 6800 or 6809, 5” or 8”, modem port number, literal interface, SSB, Miniflex, Flex 2.0 or Flex 9, SW7BG, Smartbug, GMIBU, or SBUG E.

Microtime
Circuit board and
documentations .......................... $ 35.00
Assembled and tested
push button set .......................... $ 95.00
Assembled and tested
ISO hardware set ........................ $105.00

AAA Chicago Computer Center
120 Chestnut Lane
Wheeling, IL 60090
(312) 459-0450

Dealer for Gimix, SSB, SWTPC and TSC

data management system
OMO SCIENTIFIC OS-65U SOFTWARE

FILE MANAGER
- Extremely flexible and easy to use.
- Add CHANGE, MOVE, LINK, UNLINK.
- Full screen formatting on print cm’s.
- Automatic file compression on deleted records.
- Select any or all fields or work with entire record access. Multi-key.
- Replaces your OS-DMS file editor.

BP SORT
- HIGH SPEED modems.
- Sort any length file in less than one second.
- Up to six key.
- Ascending Descending.
- With 10 000 lines in less than 1/2 seconds.
- Interface for permanent CMS files.

UL UTILITIES
- Creates OS-DMS compatible files and records.
- Lets you search in OS-DMS records.
- Documentation. Adds unique CMS-DMS headers.

2Z REPORT
- Reports entries for OS-DMS files.
- Reads multiple surfaces and diskettes.

Computer Data Management Package (100 drives):
$149.00
Basic Management: Package (50 drive)...
$124.00
Advanced Management: Package (100 drive)...
$189.00

*All software OS-DMS compatible — requires OS-6501.

DES MOINES COMPUTER
182
515-287-7392 4650 Farklawn Dr. Des Moines, IA 50313
C.O.D. VISA MASTERCARD

TSS-Z80 APL
- Stand-alone APL for Z80 occupying 28k (includes OS & DOS).
- File and system functions available within user functions.
- 3-D Matrix, inner and outer products.
- Catenate, scan, compress, reduce and rotate along specified axis.
- Use APL character set or ASCII substitutes.
- Interaction with large mainframes using APL.
- Custom versions for many popular 2-80 based computers.

**2E2 TELECOMPUTE INTEGRATED SYSTEMS INC.
251 SPADINA AVE., K118
TORONTO, ONTARIO CANADA MST 1Z2
PHONE: 416-363-9295

16K UPGRADE
$66.95
TRS80, APPLE II, AND SORCERER

HIGH QUALITY PRIME 16K RAMS FOR MEMORY UPGRADE. THE KIT INCLUDES, THE RAMS, SHUNTS AND INSTRUCTIONS TO ALLOW EASY UPGRADE IN MINUTES. ALL PARTS CARRY 12 MONTH WARRANTY.

TO ORDER, SPECIFY KIT AND ENCLOSE CHECK OR MONEY ORDER. ADD $2.00 POST AND PACKING. TEXAS RESIDENTS ADD 5% SALES TAX.

IAN ELECTRONICS
P.O. BOX 14079
AUSTIN, TEXAS 78761

MUSICAL COMPUTER I AND II

Learn How to Read Music!
Music lessons taught at your home or at a studio cost from $7/half hour and up! Now, available to you Apple II and TRS-80 level II owners an opportunity for you to have your private music teacher in the comfort of your own home. Written by an M.A. educator with over 20 year's music experience, this two program cassette provides an alternative to music education that will make music learning fun and enjoyable for the entire family!

32K Apple II
16K TRS-80 Level II
$34.95 plus $1.00 for postage
and handling
Check or Money Order Only
(Mi. residents add 4% sales tax)
Apple II is a TM of Apple Computer, Inc.
TRS-80 is a TM of Tandy Corp

COMPUTER 
APPLICATIONS
TOMORROW
Birmingham, Mi. 48012

Microcomputing, August 1980 203
CT-1024 Terminal Modifications

Expand your cursor control capability, and add a clock.

Fred Cooley
4646 Willis Ave.
Sherman Oaks CA 91403

This article describes two circuit diagrams for the SWTP CT-1024 CRT terminal that I've built and tested on my machine. These modifications will be useful for any CRT terminal device.

Expanded Capability Cursor Control

The heart of the CT-CA computer-controlled cursor board is the 7445 BCD-to-decimal decoder, which breaks down the ASCII control characters to one of ten different outputs. By replacing the 7445 with one or two 74154 demultiplexers, either 16 or 32 outputs may be obtained (see Fig. 1). These control character outputs serve those functions handled by the CT-CA board, and also control other internal functions such as page select, cursor on/off, cursor solid/blinking or any external function.

All outputs can be computer controlled by outputting the proper ASCII control character. Any output to be "held" on is fed to an R/S latch. Connections to the CT-1024 are made using Molex pins over the CT-CA's connector strips J3 and J4. Don't use certain outputs:
CTRL M — CT-1024 internal carriage return
CTRL J — CT-1024 internal line feed
CTRL C — SWTP 8K BASIC ready command
CTRL O — SWTP 8K BASIC back space
CTRL X — SWTP 8K BASIC delete command

CT-1024 TV Clock

An article from Radio Electronics, July 1977, "Build This Digital On Screen TV Clock," describes the three IC clock. This modification (see Fig. 2) uses the same basic circuitry; however, the ac reference and horizontal and vertical sync pulses are taken from the CT-1024, and the clock's output is fed along with the terminal's video output to an rf modulator. Thus, no circuitry within the TV itself is touched.

Time-setting functions, on/off display and 12/24-hour format are controlled by the expanded cursor control circuit using keyboard control characters to set or reset R/S latch circuits. The MM5318 digital clock IC has seven-segment outputs that can be interfaced to the SWTP 6800 computer as described in Byte, November 1977, "Does Anybody Know What Time It Is?"

This circuit requires four connections to the CT-1024. The ac reference is obtained at J-11, pin 5; horizontal sync and vertical sync are taken from IC17, pins 5 and 4, respectively, and the video output is tied to J-10, pin 11.

Fig. 1. Cursor control circuit.

Fig. 2. TV clock circuit.
SOFTWARE WANTED

If you are an inventive programmer and could use an extra income, please call:
(213) 894-9154

We are interested in Games and Business software.
Royalty or Cash-out basis.

DATASOFT
16606 Schoenborn St.
Sepulveda, Ca. 91343

If you are tired of searching through computer magazines to find articles that relate to your 6502 system? Since 1977 MICRO has been devoted exclusively to 6502 systems. On a regular monthly basis, MICRO publishes application notes, hardware and software tutorials, interfacing information and program descriptions with complete source listings, a continuing 6502 bibliography, with the same printed quality as the magazine you are now reading. In the near future, MICRO plans to add a hardware catalog, product evaluations, technical data sheets, and a news section on current 6502 happenings. We have already published over 24 issues and our worldwide circulation has been growing with each issue. MICRO is the complete reference source for all 6502 enthusiasts, and we're prepared to let you see for yourself. If you haven't seen MICRO yet, write to the address below for a FREE sample copy. No matter what computer magazines you have, if you are serious about 6502, you need MICRO!

You can order twelve issues of MICRO for $15.00 within the United States, or for $18.00 outside the U.S. Air mail subscriptions cost $21.00 in Central America, $33.00 in Europe and South America, and $36.00 in all other countries.

P.O. Box 6502
Chelmsford, MA 01824
APPLE-GRAMMAR

APPLE-GRAMMAR is a program that covers 7 parts of speech of the English language. It quizzes children and reinforces specific parts of grammar that need attention. The parent or teacher can easily enter the program and make desired modifications. At the end of each segment, that portion is corrected with an appropriate explanation and reinforcement. The program results are then compiled and graded and the drill is ready for continued use.

APPLE-GRAMMAR requires 32K in Applesoft and a disk drive. $19.95.

Teachers’ Aide I and II

Teachers’ Aide I allows the teacher to construct quizzes and tests which are stored on the disk as text files. The teacher then has complete control over the editing and revision of these files. It also, allows individual students to take the teacher constructed quiz or test on the computer and then automatically saves the individual student’s score to a score file created by the teacher.

Teachers Aide I with Multi-Choice format requires 32K in Applesoft and a disk drive. $19.95

Teachers’ Aide II with True and False format requires 32K in Applesoft and a disk drive. $19.95

38437 Grand River • Farmington Hills, MI 48018
(313) 477-4470

Dealer’ Inquiries Welcome

---

**Is HARD COPY STORAGE a problem?**

**KILOBAUD MICROCOMPUTING,** as thick as it is, is more like a floppy when it comes to standing on the bookshelf. Try the KILOBAUD MICROCOMPUTING Library Shelf Boxes . . . sturdy corrugated white dirt-resistant cardboard boxes which will keep them from flopping around. We have self-sticking labels for the boxes, too, not only for KILOBAUD MICROCOMPUTING, but also for 73 Magazine, 80 MICROCOMPUTING . . . and for CQ, QST, Ham Radio, Personal Computing, Radio Electronics, Interface Age, and Byte. Ask for whatever stickers you want with your box order. They hold a full year of KILOBAUD MICROCOMPUTING, 80 MICROCOMPUTING . . . or 73 Magazine. Your magazine library is your prime reference: keep it handy and keep it neat with these strong library shelf boxes. One box (BX-1000) is $2.00, 2-7 boxes (BX-1001) are $1.50 each, and eight or more boxes (BX-1002) are $1.25 each. Be sure to specify which labels we should send. Have your credit card handy and call our toll-free order number 800-258-5473, or use the order card in the back of the magazine and mail to:

KILOBAUD MICROCOMPUTING

Peterborough NH 03458

---

**Real Estate Software**

For Apple or TRS-80

**Property Management System**

(32K, 1 Disk Systems)

**Features:**

- Tenant Information
- Late Rent Reports
- YTD & Monthly Income
- Handles — Partial Payments
- Returned Checks
- Advance Payments
- Prints Receipts
- 5 Digit Expense Accounts
- Building Expense Report
- Vendor Expense Report
- Income Tax Report
- All Reports Can Be Printed
- Complete Documentation
- Easy Data Entry & Edit
- 200 Units per File

**Price $225.00**

**Real Estate Analysis Modules:**

(Cassette or Disk)

1) Home Purchase Analysis  
2) Tax Deferred Exchange  
3) Construction Cost/Profit  
4) Income Property Cashflow  
5) APR Loan Analysis  
6) Property Sales Analysis  
7) Loan Amortization

**$35 Per Module**

AI Computer Stores Everywhere
Or Order COD Direct
(Ca Residents Add 6% Sales Tax)
(213) 372-9419

Dept. K
2045 Manhattan Ave., Hermosa Beach, CA 90254

---
HAVE WE GOT A PROGRAM FOR YOU!

The new computers are showing off. Over $50 million worth of equipment in over 100,000 square feet of space, including the latest software and hardware for business, government, home and personal use. Everything the NCC show has and more will be on display, and you can buy it all right on the spot.

Computers costing $150 to $250,000, mini and micro computers, data- and word-processing equipment, telecommunications, office machines, peripheral equipment and services from leading names in the industry like IBM, Xerox, Radio Shack and Apple will all be there.

There will be conferences on business uses of small to medium sized computers, and how to make purchasing evaluations.

There will be robots, computerized video games, computer art and computer music.

Everyone from kids to people who earn their living with computers will have a great time at the largest computer show ever organized in each region.

Admission for adults is $5. The public is invited, and no pre-registration is necessary.

Don't miss the computer show that mixes business with pleasure. Show up for the show.

WASHINGTON, D.C.
D.C. ARMORY/STARPLEX
THURSDAY-SUNDAY
SEPTEMBER 18-21
11 A.M. TO 9 P.M. THURS.-SAT.
11 A.M. TO 5 P.M. SUN.

CHICAGO
McCORMICK PLACE
THURSDAY-SUNDAY
OCTOBER 16-19
11 A.M. TO 9 P.M. THURS.-SAT.
11 A.M. TO 5 P.M. SUN.

BOSTON
HYNES AUDITORIUM
PRUDENTIAL CENTER
THURSDAY-SUNDAY
NOVEMBER 20-23
11 A.M. TO 9 P.M. THURS.-SAT.
11 A.M. TO 5 P.M. SUN.
Pan Am Flies More Efficiently
Pan American World Airways plans to save more than 7,500,000 gallons of fuel a year for its fleet of 747 Jumbo Jets. They expect to realize this savings through the installation of Delco Electronics' new Flight Management System (FMS), a computerized system designed to minimize fuel consumption by regulating throttle adjustments to maintain optimum speed as selected by the pilot in conjunction with pitch control through the plane's automatic pilot system. The FMS takes into account and makes adjustments for the aircraft's constantly changing weight, altitude, outside temperature and other factors. In so doing, the FMS maintains the aircraft at a specified speed and minimized acceleration during maneuvering, thereby reducing unnecessary use of fuel.

The Flight Management Computer, which utilizes Motorola's NMOS LSI circuits, is being installed on 39 Boeing 747s, with six all-cargo 747s targeted for installation of the system at a later date. The airline plans to save approximately $5.55 million per year.

Flying High with Help from TI
Computers are also helping to make the aviation industry more efficient through inventory control. Clients of Inventory Locator Service, Inc., of Memphis, TN, use a Texas Instruments 765 Data Terminal to tie into a central ILS host computer data bank, which inventories over a million available new and used aircraft parts and support items from many suppliers. In this way, the computer system, with built-in acoustic couplers, reduces airplane downtime and helps to get the planes off the ground with speedy, inexpensive inventory searches.

She Talks in Beauty
Who is generally recognized as the first computer programmer?
According to a course brochure from George Washington University, it was the Countess of Lovelace, a lady named Ada who is noted for her work in the middle 1800s with Charles Babbage, the "father of the computer." Her place in computer history has been duly recorded with the introduction of a computer programming language named after her. The new language, called Ada, was recently developed by the U.S. Department of Defense for use in embedded computer applications.

Incidentally, the father of Ada (the person, not the language) was George Gordon Byron, an early nineteenth century English poet, who is also noted for his work with language.

Making the Rounds
The medical data-processing community can now make use of a recently developed information service to aid in the understanding, evaluation and selection of a hospital laboratory computer system. "The MedSy Report on Clinical Laboratory Systems" contains teaching materials, service materials and research support to define the potential and capability of computers in this field and keep users informed of any new developments or changes.

This product results from three years of clinical laboratory systems research from leading American universities and private hospitals. The service includes receipt of a MedSy handbook to help you evaluate and select a system for your particular needs. Subscribers receive updated information supplied on a bimonthly basis. For more information, contact Medical Systems Research, Inc., 2025 N.W. 24th St., Gainesville, FL 32605.

CRT Terminal Users Favor 80 Columns
What is the most popular CRT terminal size?
According to a recent survey conducted by Venture Development Corporation, a Wellesley, MA, consulting firm, users of alphanumeric CRT terminals express a strong preference for 80-column by 24-row displays. The 80-column display has become standardized to the point where only five percent of users surveyed prefer displays with fewer columns, and only nine percent have a preference for more than 80 columns. Although the 132-column display has applications in selected areas, most users are not willing to pay the increased price for a feature which they feel has only marginal value.

However, users expressed a desire for more total characters per display, but felt this should be done through additional rows, not more columns. A 25th row is highly desirable, as are additional rows, for word-processing applications. The 25th row, which has been gaining wider acceptance, is used primarily for monitoring system status and control rather than for display of data.

Test Your ESP
Now you can test your extrasensory powers on your 16K TRS-80 with a new program from Manhattan Software, Inc., PO Box 5200, Grand Central Station, New York, NY 10017. E.S.P. Lab ($9.95) can be used for research into possible extrasensory phenomena, as well as for testing the possibility of telepathy, clairvoyance, precognition and telekinesis. It selects randomly from among a set of five symbols, presenting one symbol at a time on the screen for telepathy experiments. All symbols are programmed in machine language and appear on the screen instantaneously. For clairvoyance and precognition testing, the program selects the symbol before or after the response, prompting only with a question mark on the screen.

A separate section provides a special computer-style test of possible telekinesis. A randomly moving dot is presented on the screen, and the experimenter may attempt to use "mental power" to influence the direction of movement of the dot.

Persons who become proficient at this program are requested not to enter within a 150-mile radius of the Mount St. Helens area.
ENTER: "Nightly News"

Computers may soon take the place of TV sets in bringing the nightly news into the family living room. Beginning this summer, 11 Associated Press members will begin an experiment into the new technology of information retrieval with CompuServe, Inc., a Columbus, OH, computer firm. Home personal computer owners will be able to obtain newspaper information by dialing special telephone numbers. The cost will be $5 an hour to access news, sports, business and feature data provided by the newspapers and the AP. CompuServe also provides computer programming and games through an existing personal computing network available in more than 250 cities. Each newspaper will participate for a six-month period, providing news, features and advertising material in its community.

Computer Pit Stop

Al Unser's pit crew at this year's Indianapolis 500 Auto Race included the first computer ever to be used at Indy. The Basic Four System 410 small-business computer provided Unser with a computerized management information system. Designed for use in strategy planning for the race, the computer endured 100 degree temperatures, typical Indiana humidity and crackling spikes of electromagnetic interference to monitor the performances and positions of the 15 leading contenders.

For each car, the 410 computed the position in the race, total laps completed, lap number of last pit stop, track condition (yellow or green), yellow laps since last pit stop, total laps since last pit stop, pit stops, and total number of pit stops. Additionally, it tracked the fuel consumption of the car driven by Unser.

This data enabled Unser's racing team management to make split-second decisions to schedule pit stops under the most advantageous conditions. Electronic sensing devices and high-speed calculators are routinely used on the racing circuit, but the introduction of the computer represented an all-new dimension in race-management sophistication.

Laps driven by Al Unser were entered manually and stored in the Basic Four System 410 small-business computer, which provided racing strategy for the Unser racing team at the 1980 Indianapolis 500 Auto Race.

The computer consisted of a CPU with 96K bytes of memory, 14 megabytes of magnetic disk information storage capacity, three video display terminals, a 160 cpm printer and a 9.2 megabyte tape cartridge for system backup and additional data storage capacity. The system functioned throughout the entire 500-mile race, keeping flawless track of the 15 selected cars and accurately recording Johnny Rutherford's first place finish in the race.

Unfortunately, the car driven by Unser, the only winner of auto racing's triple crown and three-time Indy 500 champ, did not match the computer's performance. Unser finished 27th in a field of 33, having to leave the race after 33 laps with a blown engine.

COMING NEXT MONTH

Next month's issue will place particular emphasis on the Commodore PET.

Among the articles and topics covered will be:

• A review of the new Video Interface Computer (VIC) from Commodore.
• Adding 16K to the PET.
• Interfacing PET and the H14 printer.
• Animated graphics.
• The conclusions to the "I/O Expander" and "IEEE 488" articles.

Even if you're not a PET user, there'll be something for you.
Super Scarafest '80
Super Scarafest '80, an amateur radio and computer festival, will be held Aug. 16-17, 1980, at the Ramada Inn in North Haven, CT. Sponsored by the South Central Connecticut Amateur Radio Assoc., this event will include exhibtor booths, a ham and computer flea market and an auction.
For information, write: Super Scarafest '80, PO Box 5265, Hamden, CT 06518.

Eighth World Computer Congress
Australia will co-host with Japan the Eighth World Computer Congress scheduled for Oct. 6-17, 1980, and conducted by the International Federation for Information Processing (IFIP). The congress commences in Tokyo, Japan, Oct. 6-9 and concludes in Melbourne, Australia, Oct. 14-17. An exhibition of hardware and related services together with submission of papers and discussions will be scheduled in each location. A single registration fee will cover attendance at both locations.
For information, contact: The Eighth World Computer Congress, IFIP Congress '80, GPO Box 880G, Melbourne, Victoria, Australia 3001.

Four Tutorials Precede Compccon Fall '80
Four pre-conference tutorials will precede Compccon Fall '80, sponsored by the IEEE Computer Society. “Distributed Processing,” the theme of the conference, will be the unifying thread of the tutorials. Topics to be presented are: “Local Computer Networks,” “An Overview of Distributed Processing,” “Communication Technology in the 80's,” and “Distributed System Design.” Compccon Fall '80 is Sept. 22-25, 1980 at the Capital Hilton Hotel, Washington, DC.
For more information, write: Compccon Fall '80, PO Box 639, Silver Spring, MD 20901, or call 301-589-3386.

Conferences for Computer Use in Small Business
Three regional computer conferences will be held on the theme: Thinking Small—Using Small Computers to Increase Business Productivity. They will be held Sept. 18-21, 1980, in Washington, D.C.: Oct. 16-19, 1980, in Chicago, IL; and Nov. 20-23, 1980, in Boston, MA. Sponsored by The Information Exchange, each conference program will be a four-day program designed to explore the opportunities presented by small computers for improved productivity in small businesses.
There will be a concurrent exposition at each location. For further details, contact Kendall Burroughs, at The Information Exchange, 1730 North Lynn Street, Suite 400, Arlington, VA 22209, 703-521-6209.

Mid-Atlantic Computer Show
The Mid-Atlantic Computer Show will be held at the D.C. Armory/Starplex, Washington, D.C., on Sept. 18-21, 1980. General adult admission is $5 to this exposition featuring small and medium-sized business systems, scientific, engineering computers and microcomputers. For information, contact: National Computer Shows, 824 Boylston St., Chestnut Hill, MA 02167, 617-739-2000.

Conference for Consumer Electronics Instructors
The first special Conference for Consumer Electronics Instructors will be held as part of the NESDA/ISCET Convention, Aug. 18-23, at the Galt House, Louisville, KY. The concept of the Instructors Conference is to upgrade educational techniques for electronics instructors and to encourage the development of each curriculum to meet today's rapidly changing technology.
Important events at the week-long NESDA/ISCET Convention include the "Electronics Derby" trade show, the National Service Conference to discuss industry problems, business management and technical sessions and a special conference for electronics instructors. Various electronics firms will be sponsoring local trips, dinners, lunches and cocktail parties. For more information or registration blanks, write or call NESDA, 2708 West Berry St., Ft. Worth, TX 76109, 817-921-9061.

New Jersey Computer Show
The 1980 New Jersey Personal Computer Show and Fleamarket (NJPCS) will be the first home and hobby computer show ever held in Northern New Jersey. The show is Sept. 27 and 28 at the Holiday Inn (North) at Newark International Airport (NJ Turnpike Exit 14). Featured will be in an indoor commercial exhibit area, a large outdoor fleamarket and user group meetings/forums on the TRS-80, PET, Apple, Heath and other popular systems. For additional information, write: NJPCS, Kengore Corp., 9 James Ave., Kendall Park, NJ 08824.

AED Workshops
The Association for Educational Data Systems is offering a series of workshops especially designed for administrators, educators and computer professionals interested in computers in education.
For information, call: 202-833-4100.
If North Star or Cromemco offer it . . .

WE HAVE IT!!

Immediate Delivery at Discount Prices

NORTH STAR
Horizon' 2
32K Double Density
Assembled and Tested
List $3095

ONLY $2619

North Star KIT products have been discontinued. MiniMicroMart HAS
INVENTORY of most items!

KITS

<table>
<thead>
<tr>
<th>Model</th>
<th>Assembled</th>
<th>Kit</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZON 1 16K, DD</td>
<td>HORIZON 1, DD</td>
<td>$1474</td>
<td>$1279</td>
</tr>
<tr>
<td>32K, DD, List $1999</td>
<td>32K, DD, List $2699</td>
<td>$1684</td>
<td>$2239</td>
</tr>
<tr>
<td>32K, DD, List $2199</td>
<td>32K, DD, List $2699</td>
<td>$1684</td>
<td>$2239</td>
</tr>
<tr>
<td>HORIZON 2, 16K, DD</td>
<td>HORIZON 2, 32K, DD</td>
<td>$1824</td>
<td>$2619</td>
</tr>
<tr>
<td>32K, DD, List $2399</td>
<td>32K, DD, List $2699</td>
<td>$2034</td>
<td>$2339</td>
</tr>
<tr>
<td>32K, DD, List $2779</td>
<td>32K, DD, List $3099</td>
<td>$2339</td>
<td>$3049</td>
</tr>
</tbody>
</table>

ASSEMBLED

<table>
<thead>
<tr>
<th>Model</th>
<th>Assembled</th>
<th>Kit</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZON 1, DD</td>
<td>$2279</td>
<td>$2279</td>
<td></td>
</tr>
<tr>
<td>32K, DD, List $2695</td>
<td>32K, DD, List $3095</td>
<td>$2539</td>
<td>$3059</td>
</tr>
<tr>
<td>32K, DD, List $2695</td>
<td>32K, DD, List $3095</td>
<td>$2539</td>
<td>$3059</td>
</tr>
<tr>
<td>HORIZON 2, 32K, DD</td>
<td>HORIZON 2, 32K, DD</td>
<td>$2619</td>
<td>$2619</td>
</tr>
<tr>
<td>32K, DD, List $3099</td>
<td>32K, DD, List $3099</td>
<td>$3049</td>
<td>$3049</td>
</tr>
<tr>
<td>32K, DD, List $4099</td>
<td>32K, DD, List $4099</td>
<td>$3469</td>
<td>$3469</td>
</tr>
<tr>
<td>64K, DD, List $8300</td>
<td>64K, DD, List $8300</td>
<td>$3239</td>
<td>$3239</td>
</tr>
<tr>
<td>64K, DD, List $8300</td>
<td>64K, DD, List $8300</td>
<td>$3239</td>
<td>$3239</td>
</tr>
</tbody>
</table>

NORTH STAR APPLICATIONS SOFTWARE

(Exclusive for use with North Star Disk Systems — specify Double or Quad Density)

NORTHWORD, List $399
MAILMANAGER, List $299
INFOMANAGER, List $499
GENERALLEDGER, List $999
ACCOUNTSRECEIVABLE, List $599
ACCOUNTSPAYABLE, List $599

NORTH STAR HARD DISK HD-18


OUR PRICE $4199

NORTH STAR MDS-A

— Double (or Quad) Density Disk System, Kit, List $799

Assembled and Tested, List $899

SPECIAL $719

NORTH STAR MEMORY BOARDS

16K Dynamic RAM (RAM-16-A/A), Assembled, List $499

Kit, List $449

SPECIAL $299

32K RAM-32/AI, Assembled, List $739

Kit, List $669

SPECIAL $199

SHIPPING AND INSURANCE: Add $15 or Horizons, $2.50 for Boards and Software. Hard Disk Systems and Cromemco systems shipped freight collect. Advertised prices are for prepaid orders. Credit card and C.O.D. 2% higher. Deposit may be required on C.O.D. All prices subject to change and offers subject to withdrawal without notice.

— WRITE FOR FREE CATALOG —

MiniMicroMart, Inc.

1618 James Street, Syracuse, NY 13203 (315) 422-4467 TWX 710-541-0431

Microcomputing, August 1980 211
**Classifieds**

Classified advertisements are intended for use by persons desiring to buy, sell or trade used computer equipment. No commercial ads are accepted.

Two sizes of ads are available. The $5 box allows up to 5 lines of about 35 characters per line, including spaces and punctuation. The $10 box allows up to 10 lines. Minimum use of capital letters to save space. No special layouts allowed. Payment is required in advance with ad copy. We cannot bill or accept credit.

Advertising title and payment must reach us 60 days in advance of publication (i.e., copy for March issue, mailed in February, must be here by Jan. 1). The publisher reserves the right to refuse questionable or inapplicable advertisements. Mail copy with payment to: Classifieds, Kilobaud Microcomputing, Peterborough NH 03458. Do not include any other material with your ad as it may be delayed.

---

**For Sale:** D. C. Hayes Micromodem for Apple II, new, works fine! Only $320. Contact: H. Rehman, 218 Huntington Road, Bridgport, CT 06608. 203-579-0472.

Super ELF computer with supply, cabinet, memory saver, CMOS RAM, low address display, expandable ($185 value), $90. Peter Marcus, 10225 Coral Way, Apt. B122, Miami, FL 33165.

Sale: Titan 280 system 48K RAM, 2 Microdisks disk, 630K online, Lear Siegler ADM 3A terminal, software, manuals, like new, $400. Call 914-357-8482.


Sale: Look into your SS-50 micro with Percom's Electric Window, includes 2516 EPROMs, 120 pin, USA, Victor Kola, 2380 LK George Dr., Anchorage, AK 90504.


Patched to your NEED-2000. Contact: Bob Myer, 218 Huntington Road, Bridgport, CT 06608. 203-579-0472.

---

**Corrections**

The left brackets ([ ]) that appear in the “Orbiter” listings (May 1980, pp. 112, 113) should be up-arrows.

For 16K machines, the last two digits in the “POKE” line of Ronald Fouli’s letter (June 1980, p. 225) should be the three digits 127.

The digits in line 120 of Al Joffe’s program listing on page 32 of the September 1979 issue should be 1944, not 9114.

Gary Sabot, author of “You Name It!” (May 1980), writes: In the two years since I wrote the article, the version of BASIC I used has become obsolete. In order for the program to run on any version of Microsoft BASIC (such as MBASIC and Radio Shack Level II), a small change must be made. Wherever the old program has “MID$...” you must substitute “MID$(...”. Lines 190, 200 and 210 must be changed in this way.

Allan Domoret writes that there is a typo in Example 2 of his article “Uppercase Lowercase Utility for the TRS-80” (March 1980). The POKEs to decimal memory references 16512, 16513 and 16514 should be read 16408, 16409 and 16410, respectively. The hex references to &h4019, &h4019 and &h401A are correct as shown.

Author of “Lowercase for the TRS-80,” Steven Wexler, let us know that there is an error in his listing. The next to the last line should read, in part: “7FFA D2,7D,04. The second element is D2, not 02.”

This is not a correction; it is just a note that the list of sources of educational software on page 105 of “Bringing Microcomputers into Schools” (June 1980) was not meant to include all sources.

Chesney Twombly, author of “8800 Program Loader/Relocator” (April 1980), wants to add the following note to his article: The TSC 8800 Relocator program will run on an H8 using CONOPS if you remember to change the addresses of external routine jumps to read as follows:

```
431F C3 D8 6E MONTR JMP MONIT
4322 C3 1B 6C INCH JMP INCHR
4325 C3 67 20 OUTCH JMP WCHR
```

Robert Penoyer, author of “Accurate Voltage Dividers” (April 1980), has informed us that the last sentence of the second complete paragraph on page 143 should finish: “3900 Ohms and 12 Ohms,” not “3900 Ohms and 1200 Ohms.”
29 years
Serving Computer Centers
FAMILY OWNED & OPERATED
(even "no-relation" associates are family)

Data Equipment Supply Corp.
8315 Firestone Blvd., Downey, CA 90241

$SOLID GOLD SOFTWARE®$

DES's own—2 years preparation! Writing,
testing and updating to be sure our software
deserves this table.

• FULL ACCT. PACKAGE $1600.00
  ACC/SYS GA 104 (32K) 9 DISKS
  For accounts & small businesses
  (Sold locally only for now—to give customer full support)
• LAWYER Package #1 (32K) Disk...$1200.00
  63 Attorneys, 5200 clients (200 matters ea)
  Prelim & Final Statements, Aging, Mgmt Rpts
• CHEMISTRY PROFILE (16K) $350.00
  A blood analysis program that yields a diagnosis
  based on 29 blood tests (high-normal-low)
• MLS (32K min.) Disk...$1200.00
  (Property avail, sold, by city & zone, mg/ml
  analyst rpts, buyer & seller rpts, etc.)

“GOLD PLATED SOFTWARE®”

SPORTS
• HOCKEY #1 (Disk) $29.95
  Compiler for hockey statistics—excellent for team
  and league managers. (When tested on a 17 team league
  SAVED 20 hours a week of record keeping)
• BASEBALL #1 (see Hockey) (Disk) $29.95

BUSINESS
• MAILING LIST 1.0 (16K min.) $29.95
  Maintains file and printout
• MAILING LIST 2.0 (16K min.) $49.95
  More powerful plus file merging
• SUPER LIST (8K min.) $19.95
• CALENDAR (8K min.) $19.95
  (Perpetual calendar with printout)
• PHONE MAIL SYSTEM (16K min.)...$49.95
  CBM Printer (Word processing plus phone book)

EDUCATIONAL
• FLASH CARDS (16K min.) $24.95
  Multi "user input" quiz—great study aid
• MATHEMATICS (8K min.) $7.95 ea
  1) Add B) Subtract C) Multi D) Div
• "BRAND'S SPELLING BEE" (8K min.) $9.95
  (SUPERB Aid Pre-School - 2nd)
• VISUAL PERCEPTION (8K min.) $7.95
  Shapes & Sizes
• CONSONANT BLENDS (8K min) $7.95
  2 letter sound combinations
• COUNTING 1 to 9 (8K min.) $7.95
  Visual—tutorial

GAMES
• MAY 1941 (8K min.) $24.95
  Simulated tracking & sinking of the Bismarck
• SIMON (8K min.) $7.95
  Duplicates the numbers & sounds selected
• GUESS?? (8K min.) $7.95
  Advanced sound, guessing game

★ "The Finest Software Crew in the World"★★
Mike Richter/Norm & Brad Hanson/Sy Elsayess
David Schwartz/Donna Schlieper/Bob Johnson
Dave Lundberg/Murat Kaliyaprak/Henry Kluka

SUPPLIES

(WE PLAN, WITH OUR PRICES, TO CORNER THE MARKET)

DISKETTES (FLOPPIES)
BASF (5½” & 8½”) $2.90 ea.
MEMOREX (5½” & 8½”) $2.90 ea.
WABASH (8½”) $2.65 ea.
DYSAN (5½” & 8½”) $4.90 ea.

Cassettes (Digital & Audio)
BASF [(C30 - .90¢ C60 - $1.20; C90 - $1.50; C120 - $1.75)]

RIBBONS
CENTRONICS
101 & 301 $6.15
TALLY (2100 & 2200) $3.95
DIABLO
Hy Type I $4.00 & up
Hy Type II $5.00 & up

TELETYPING #2, #13 (use on CBM) $2.95

PRINTER PAPER (✓ us for case prices)
9½ x 11 (perfs to 6½ x 11) 500 sh...$7.95
14½ x 11 500 shs $9.95

Your Complete
Computer Center

SEND FOR DESCRIPTIVE BROCHURES— ALL AVAILABLE ENGLISH/ARABIC

DATA EQUIPMENT SUPPLY CORP.
8315 Firestone Blvd., Downey, CA 90241
(213) 923-9361

PAYMENT (Calif. Residents add 6% Sales Tax)
□ CHECK #
□ VISA
□ MASTERCHARGE Exp. Date
Acct.

Name
Address
City
State Zip

Microcomputing, August 1980 213
2 NEW BOOKS FROM KB MICROCOMPUTING

• 40 COMPUTER GAMES—BK7381—Forty games in all in nine different categories. Games for large and small systems, and even a section on calculator games. Many versions of BASIC used and a wide variety of systems represented. A must for the serious computer gamesman. $7.95*

• UNDERSTANDING AND PROGRAMMING MICROCOMPUTERS — BK7382—A valuable addition to your computing library. This two part text includes the best articles that have appeared in 73 and Kilobaud Microcomputing magazines on the hardware and software aspects of the new microcomputing hobby. Well known authors and well structured text helps the reader get involved in America's fastest growing hobby. $10.95*

INTRODUCTORY

• HOBBY COMPUTERS ARE HERE!—BK7322—If you (or a friend) want to come up to speed on how computers work...hardware and software...this is an excellent book. It starts with the fundamentals and explains the circuits, and the basics of programming. This book has the highest recommendations as a teaching aid for newcomers. $4.95.*

• THE NEW HOBBY COMPUTERS—BK7340—This book takes it from where "HOBBY COMPUTERS ARE HERE!" leaves off, with chapters on Large Scale Integration, how to choose a microprocessor chip, an introduction to programming, low cost I/O for a computer, computer arithmetic, checking memory boards...and much, much more! Don't miss this tremendous value! Only $4.95.*

INTRODUCTION TO MICROCOMPUTERS (VOL. 0→III)

• AN INTRODUCTION TO MICROCOMPUTERS, VOL. 0—BK1130—The Beginner's Book—Written for readers who know nothing about computers—for those who have an interest in how to use computers—and for everyone else who must live with computers and should know a little about them. The first in a series of 4 volumes, this book will explain how computers work and what they can do. Computers have become an integral part of life and society. During any given day you are affected by computers, so start learning more about them with Volume 0. $7.95.*

• VOL. I—BK1030—2nd Edition completely revised. Dedicated to the basic concepts of microcomputers and hardware theory.

The purpose of Volume I is to give you a thorough understanding of what microcomputers are. From basic concepts (which are covered in detail), Volume I builds the necessary components of a microcomputer system. This book highlights the difference between minicomputers and microcomputers. $12.50.*

• VOL. II—BK1040 (with binder)—$30.00*—Contains descriptions of individual microprocessors and support devices used only with the parent microprocessor. Volume II describes all available chips.

• VOL. III—BK1133 (with binder)—$20.00.* Contains descriptions of all support devices that can be used with any microprocessor.

• HOW TO BUILD A MICROCOMPUTER—AND REALLY UNDERSTAND IT—BK7325—by Sam Creason. The electronics hobbyist who wants to build his own microcomputer system now has a practical "How-To" guidebook. This book is a combination technical manual and programming guide that takes the hobbyist step-by-step through the design, construction, testing and debugging of a complete microcomputer system. Must reading for anyone desiring a true understanding of small computer systems. $9.95.*

• TOOLS & TECHNIQUES FOR ELECTRONICS—BK7346—is an easy-to-understand book written for the beginning kit builder as well as the experienced hobbyist. It has numerous pictures and descriptions of the safe and correct ways to use basic and specialized tools for electronic projects as well as specialized metal working tools and the chemical aids which are used in repair shops. $4.95.*

*Use the order card in the back of this magazine or itemize your order on a separate piece of paper and mail to Kilobaud Microcomputing Book Department • Peterborough, NH 03458. Be sure to include check or detailed credit card information. No C.O.D. orders accepted. All orders add $1.00 handling. Please allow 4-6 weeks for delivery. Questions regarding your order? Please write to Customer Service at the above address.

FOR TOLL FREE ORDERING CALL 1-800-258-5473
SPECIAL INTERESTS

• TRS-80 DISK AND OTHER MYSTERIES—BK1181—by Harvard C. Pennington. This is the definitive work on the TRS-80 disk system. It is full of detailed "How to" information with examples, samples and in-depth explanations suitable for beginners and professionals alike. The recovery of one lost file is worth the price alone. $22.50.*

• INTRODUCTION TO TRS-80 GRAPHICS—BK1180—by Don Inman. Dissatisfied with your Level I or Level II manual's coverage of graphics capabilities? This well-structured book (suitable for classroom use) is ideal for those who want to use all the graphics capabilities built into the TRS-80. A tutorial method is used with many demonstrations. It is based on the Level I, but all material is suitable for Level II use. $6.95.*

• MICROPROCESSOR INTERFACING TECHNIQUES—BK1037—by Rodnay Zaks is a complete and detailed introduction to microprocessors and microcomputer systems. No preliminary knowledge of computers or microprocessors is required to read this book, although a basic engineering knowledge is naturally an advantage. Intended for all wishing to understand the concepts, techniques and components of microprocessors in a short time. $9.95.*

MONEYMAKING

• HOW TO MAKE MONEY WITH COMPUTERS—BK1003—In 10 information-packed chapters, Jerry Felsen describes more than 30 computer-related, money-making, high profit, low capital investment opportunities. $15.00.*

• HOW TO SELL ANYTHING TO ANYBODY—BK7306—According to The Guinness Book of World Records, the author, Joe Girard, is "the world's greatest salesman." This book reveals how he made a fortune—and how you can, too. $2.25.*

• FREELANCE SOFTWARE PUBLISHING—BK1179—by B. J. Korites. "This book is about money and how to make it by writing and selling computer programs," (author's foreword). If you have the skills to write a saleable program, you now need to acquire the skills to sell that program. This compact book comprehensively covers the entire publishing process and many aspects of software salesmanship. $14.95.*

• THE INCREDIBLE SECRET MONEY MACHINE—BK1178—by Don Lancaster. A different kind of "cookbook" from Don Lancaster. Want to slash taxes? Get free vacations? Win at investments? Make money from something that you like to do? You'll find this book essential to give you the key insider details of what is really involved in starting up your own money machine. $5.95.*

BUSINESS

• PAYROLL WITH COST ACCOUNTING—IN BASIC—BK1001—by L. Poole & M. Borchers, includes program listings with remarks, descriptions, discussions of the principle behind each program, file layouts, and a complete user's manual with step-by-step instructions, flowcharts, and simple reports and CRT displays. Payroll and cost accounting features include separate payrolls for up to 10 companies, time-tested interactive data entry, easy correction of data entry errors, job costing (labor of distribution), check printing with full deduction and pay detail, and 16 different printed reports, including W-2 and 941 (in CBASIC). $20.00.*

• SOME COMMON BASIC PROGRAMS—BK1053—published by Adam Osborne & Associates, Inc. Perfect for non-technical computerists requiring ready-to-use programs. Business programs, plus miscellaneous programs. Invaluable for the user who is not an experienced programmer. All will operate in the stand-alone mode. $12.50 paperback.*

• PIMS: PERSONAL INFORMATION MANAGEMENT SYSTEM—BK1009—Learn how to unleash the power of a personal computer for your own benefit in this ready-to-use data-base management program. $11.95.*

*Use the order card in the back of this magazine or itemize your order on a separate piece of paper and mail to Kilobaud Microcomputing Book Department, Peterborough NH 03458. Be sure to include check or detailed credit card information. No C.O.D. orders accepted. All orders add $1.00 handling. Please allow 4-6 weeks for delivery. Questions regarding your order? Please write to Customer Service at the above address.

FOR TOLL FREE ORDERING CALL 1-800-258-5473
-Z80-

- PROGRAMMING THE Z-80—BK1122—by Rodnay Zaks. Here is assembly language programming for the Z-80 presented as a progressive, step-by-step course. This book is both an educational text and a self-contained reference book, useful both to the beginning and the experienced programmer who wish to learn about the Z-80. Exercises to test the reader are included. $14.95.*

- Z-80 ASSEMBLY LANGUAGE PROGRAMMING—BK1177—by Lance A. Leventhal. This book thoroughly covers the Z80 instruction set, abounding in simple programming examples which illustrate assembling an elementary knowledge of assembly language usage. Features include Z80 I/O devices and interfacing methods, assembler conventions, and comparisons with 8080A/8085 instruction sets and interrupt structure. $12.50.*

- Z-80 SOFTWARE GOURMET GUIDE AND COOKBOOK—BK1045—by Nat Wadsworth. Scebi's newest cookbook! This book contains a complete description of the powerful Z80 instruction set and a wide variety of programming information. Use the author's ingredients including routines, subroutines and short programs, choose a test-recipe and start cooking! $15.95.*

-6502-

- PROGRAMMING THE 6502 (Second Edition)—BK1095—by Rodnay Zaks. Here is assembly language programming for the 6502. The 6502 can be used by a person who has never programmed before, and should be of value to anyone using the 6502. The many exercises will allow you to test yourself and practice the concepts presented. $12.95.*

- 6502 APPLICATIONS BOOK—BK1006—by Rodnay Zaks. This book presents practical-application techniques for the 6502 microprocessor, assuming an elementary knowledge of microprocessor programming. You will build and design your own domestic-use systems and peripherals. Self-test exercises included. $12.95.*

- 6502 ASSEMBLY LANGUAGE PROGRAMMING—BK1176—by Lance A. Leventhal. This book provides comprehensive coverage of the 6502 microprocessor assembly language. Leventhal covers over 80 programming examples for simple memory load loops to complete design projects. Features include 6502 assembler conventions, input/output devices and interfacing methods, and programming the 6502 interrupt system. $12.50.*

- 6502 SOFTWARE GOURMET GUIDE AND COOKBOOK—BK1055—by Robert Findley. This book introduces the BASIC language programmer into the realm of machine-language programming. The design of the 6502 instruction set, various routines, subroutines and programs are the ingredients in this cookbook. "Recipes" are included to help you put together exactly the programs to suit your taste. $12.95.*

-8080 / 8080A-

- 8080A/8085 Assembly Language Programming—by Lance Leventhal—BK1004—Assembly language programming for the 8080A/8085 is explained with a description of the functions of assemblers and assembly instructions, and a discussion of basic software development concepts. Many fully debugged, practical programs are included as is a special section on structured programming. $12.50.*

- 8080 PROGRAMMING FOR LOGIC DESIGN—BK1078—ideal reference for an independent understanding of the 8080 without these. Application-oriented and the 8080 is discussed in light of replacing conventional, hard-wired logic. Practical design considerations are provided for the implementation of an 8080-base control system. $9.50.*

- 8080 SOFTWARE GOURMET GUIDE AND COOKBOOK—BK1102—If you have been spending too much time developing simple routines for your 8080, try this new book by Scebi Computing and Robert Findley. Describes sorting, searching, and many other routines for the 8080 user. $12.95.*

-6800-

- 6800 PROGRAMMING FOR LOGIC DESIGN—BK1077—Oriented toward the industrial user, this book describes the process by which conventional logic can be replaced by a 6800 microprocessor. Provides practical information that allows an experimenter to design a complete micro control system from the "ground up." $9.50.*


-COOK BOOKS-

- CMOS COOKBOOK—BK1101—by Don Lancaster. Details the application of CMOS, the low power logic family suitable for most applications presently dominated by TTL. Required reading for every serious digital experimenter! $10.50.*

- TVT COOKBOOK—BK1064—by Don Lancaster. Describes the use of a standard television receiver as a microprocessor CRT terminal. Explains and describes character generation, cursor control and interface information in typical, easy-to-understand Lancaster style. $9.95.*

- TTL COOKBOOK—BK1063—by Donald Lancaster. Explains what TTL is, how it works, and how to use it. Discusses practical applications, such as a digital counter and display system, events counter, electronic stopwatch, digital voltmeter and a digital tachometer. $9.50.*

- MICROCOMPUTING CODING SHEETS Microcomputing's definitive software tool—so programmers would try to work without these handy scratch pads, which help prevent the little errors that can cost hours and hours of programming time. Available for programming is Assembly/Machine Language (PD1001), which has columns for address, instruction (3 bytes), source code (label, op code, operand) and comments; and for BASIC (PD1002) which is 72 columns wide. 50 sheets to a pad. $2.39.*

*Use the order card in the back of this magazine or itemize your order on a separate piece of paper and mail to Kilobaud Microcomputing Book Department • Peterborough NH 03458. Be sure to include check or detailed credit card information. No C.O.D. orders accepted. All orders add $1.00 handling. Please allow 4-6 weeks for delivery. Questions regarding your order? Please write to Customer Service at the above address.
**BASIC AND PASCAL**

- **PROGRAMMING IN PASCAL**—BK1140—by Peter Grogono. The computer programming language PASCAL was the first language to embody in a coherent way the concepts of structured programming, which has been defined by Edsger Dijkstra and C.A.R. Hoare. As such, it is a landmark in the development of programming languages. PASCAL was developed by Niklaus Wirth in Zurich; it is derived from the language ALGOL 60 but is more powerful and easier to use. PASCAL is now widely accepted as a useful language that can be efficiently implemented, and as an excellent teaching tool. It does not assume knowledge of any other programming language; it is therefore suitable for an introductory course. $12.95.*

- **THE BASIC HANDBOOK**—BK1174—by David Lien. This book is unique. It is a virtual ENCYCLOPEDIA of BASIC. While not favoring one computer over another, it explains over 250 BASIC words, how to use them and alternate strategies. If a computer does not possess the capabilities of a needed or specified word, there are often ways to accomplish the same function by using another word or combination of words. That's where the HANDBOOK comes in. It helps get the most from your computer, be it a "bottom-of-the-line" micro or an oversized monster. $14.95.*

- **BASIC NEW 2ND EDITION**—BK1081—by Bob Albrecht. Self-teaching guide to the computer language you will need to know for use with your microcomputer. This is one of the easiest ways to learn computer programming. $6.95.*

- **BASIC BASIC (2ND EDITION)**—BK1026—by James S. Coan. This is a textbook which incorporates the learning of computer programming using the BASIC language with the teaching of mathematics. Over 100 sample programs illustrate the techniques of the BASIC language and every section is followed by practical problems. This second edition covers character string handling and the use of data files. $9.45.*

- **ADVANCED BASIC**—BK1000—Applications, including strings and files, coordinate geometry, area, sequences and series, simulation, graphing and games. $9.65.*

- **MY COMPUTER LIKES ME . . . WHEN I SPEAK BASIC**—BK1039—An introduction to BASIC simple enough for kids. If you want to teach BASIC to anyone quickly, this is the way to go. $2.00.*

- **SIXTY CHALLENGING PROBLEMS WITH BASIC SOLUTIONS (2nd Edition)**—BK1073—by Donald Spencer, provides the serious student of BASIC programming with interesting problems and solutions. No knowledge of math above algebra required. Includes a number of game programs, as well as programs for financial interest, conversions and numeric manipulations. $6.95.*

**GAMES**

- **WHAT TO DO AFTER YOU HIT RETURN**—BK1071—PCC's first book of computer games . . . 48 different computer games you can play in BASIC . . . programs, descriptions, many illustrations. Lunar Landing, Hammurabi, King, Civial 2, Qubic 5, Taxman, Star Trek, Crash, Market, etc. $10.95.*

- **BASIC COMPUTER GAMES**—BK1074—Okay, so once you get your computer and are running in BASIC, then what? Then you need some programs in BASIC, that's what. This book has 101 games for you from very simple to real buggers. You get the games, a description of the games, the listing to put in your computer and a sample run to show you how they work. Fun. Any one game will be worth more than the price of the book for the fun you and your family will have with it. $7.50.*

- **MORE BASIC COMPUTER GAMES**—BK1182—edited by David H. Ahl. More fun in BASIC! 84 new games from the people who brought you BASIC Computer Games. Includes such favorites as Minotaur (battle the mythical beast) and Eliza (unload your troubles on the doctor at bargain rates). Complete with game description, listing and sample run. $7.50.*

*Use the order card in the back of this magazine or itemize your order on a separate piece of paper and mail to Kilobaud Microcomputing Book Department.

- Peterborough NH 03458. Be sure to include check or detailed credit card information. No C.O.D. orders accepted. All orders add $1.00 handling.

Please allow 4-6 weeks for delivery. Questions regarding your order? Please write to Customer Service at the above address.

FOR TOLL FREE ORDERING CALL 1-800-258-5473


In response to Mr. Spearman: Listings 5-7 illustrate six programs run under WATFIV-S, G Level FORTRAN IV and PL/I on an IBM 4331. (I would like to thank Larry Oliver of the LMR Computer Center for his assistance.) Similar time savings should be realized when this technique is applied to most compilers (be they on a micro, a mini, or a maxi) if it is able to recognize a constant subscript. If the compiler is not able to determine that the subscript is a constant, then it will treat this array reference the same as it would treat a reference subscripted with a variable.

Warren A. Harrison
Computer Science Dept.
University of Missouri
Rolla, MO 65401

Correction

Before submitting my article, "A Micro for the Eighties" (May 1980), I talked by telephone with a dealer confirming the then-current prices for AlphaMicro products. Since these have been reduced the last few months, I was concerned about a price increase. At no time did this dealer or another to whom I talked advise me of any change in policy concerning the sales of equipment by AlphaMicro.

I have since called two dealers and AlphaMicro to find that AlphaMicro made a change in marketing policy effective January 1, 1980. Primarily to enhance total system reliability, AlphaMicro Systems no longer sells the AM-100 CPU boards or the disk control boards as separate items. One can only purchase a complete system from AlphaMicro. The minimal system is an AM-100 with double density floppy (but without terminals or printers). The base price is approximately $10,800.

Some dealers still have AM-100 CPU boards, ordered before the policy change, which they will sell separately for those persons wanting to upgrade an 8080 or Z-8 system.

I am informed that the policy created no small measure of dealer resistance and that many dealers have expressed opposition to the policy. I do not know if this will result in a change—I rather doubt that it will.

Since the AlphaMicro rep told me that the new policy is primarily the result of the introduction of a new and faster CPU called the AM-100-T, apparently, this CPU stretches most S-100 motherboards beyond their capabilities. The introduction of the new policy, while making it much more expensive to upgrade to an AlphaMicro system, results in AlphaMicro supplying a complete system which they know will work, instead of struggling with users who have placed an AlphaMicro CPU on a standard motherboard and with inferior memory.

I deeply regret the inaccuracies appearing in the article. I thought I was going out of my way to avoid problems such as this. Apparently, I did not go far enough or ask the right questions. Frankly, it never dawned on me that AlphaMicro would stop selling individual CPU boards. Again, my apologies.

Wm. C. Welborn, Jr.
Evansville, IN

Praise for Pascal

I was pleased to see the article, "An Introduction to Pascal," by Jim Gagne in the June 1980 issue. Besides introducing the language, it also contains a good sales pitch on the benefits of a structured language.

I feel strongly that new users of microcomputers should be learning Pascal as their first computer language. This would avoid all the bad programming habits that people pick up when starting out with an old-style language, such as BASIC. What is really needed here is a simple low-cost computer with Pascal in ROM. This would mean that whenever you switched the machine on, there would be Pascal, ready to run.

Unfortunately, most of the versions of Pascal that are available for microcomputers are compilers, which require floppy disks and extensive memory. For the beginning programmer, an interpreter is much better because it executes the program lines directly, and requires much less memory. It will be slower, of course, but that is not normally a problem.

As an experiment, I recently wrote an interpreter for Pascal, just to see if it could be done. I simplified standard Pascal slightly, to make it easier to interpret. In particular, there must be one statement per line, and semicolons are not used to separate statements. The indentation of lower-level statements is compulsory.

I think that having an interpreter such as this on a small appliance-type microcomputer would be a great advance in hobby computing. The version I have now is written in assembly language for a time-sharing computer, but I intend to do it again for my Motorola 6802 microcomputer.

J. Gary Mills
Winnipeg, Man.
Canada

Love That TRS-80

The April 1980 "Publisher's Remarks" indicated interest in the comments of users of microcomputers for business operations.

Our company uses a TRS-80 (Model I) with lowercase mod, 48K RAM, standard 35-track disk drives and a daisy wheel printer. Although our business is not suitable for a minicomputer system, we prefer our TRS-80 for a number of reasons.

Most important, we can write our own programs, giving us the flexibility to produce and format data as we wish, and to alter the output as our needs change.

The other reasons have mainly to do with cost savings and convenience. For instance, our office payroll and related expenses have fallen $24,000/annum, and service is available through a maintenance contract with a local firm. Also, programs such as Electric Pencil enable us to use it for more functions than we had contemplated.

We did experience some reliability problems. Substituting NEWDOS for TRSDOS solved most of them. Others appear to be caused by such things as poor connections developing at the edge card connectors. After some experience we have been able to recognize the causes and eliminate most problems. We notice an increasing number of reliability aids, such as data separators, on the market and we will no doubt be continually upgrading our equipment.

W. K. Wells
Scarborough, Ontario
Canada

REMARKS (from page 7)

Opportunity Knocketh

Software and hardware may come and go, but one thing goes on, regardless of the changes, and that's publishing. The faster the changes happen, the more need there is for more magazines and books to support the changes. This explains the growth we've experienced with Kilobaud Microcomputing and 80 Microcomputing magazines.

Since it takes people to make this growth happen and continue, we have career spots open, and no end in sight to the projected growth. If you have any background or desire to apprentice in editing, technical editing, advertising sales, circulation, product testing, programming or any of the other facets of publishing, you should let me know. Send me a letter telling me what you think you can do for us and what aspects of your background and experience substantiate that expectation.

Ad Policy

We've received several reader complaints about the recent Interlude ads. This was not unexpected. But we figured that since most readers of this magazine were presumably knowledgeable about sex, censorship of the ad would achieve little.
**NEW PRODUCTS!**

Super Color S-100 Video Kit $129.95

Expandable to 256 x 192 high resolution color graphics on the same controller. Memory mapped, 1k RAM expandable to 6k. 5-10 bus, 1002, 8800, 8085, 780 etc.

Delivery January II.

1802 16K Dynamic RAM Kit $149.00

Expands to 32k. Hidden refresh write cycles to 24M. 16k RAM $83.

**Super Quest Basic—**

Quest, the leader in inexpensive 1802 systems announces a new and improved version. Our kit is the first company worldwide to ship a full size Basic for 1802 systems. Complete with: Data book; Timed subroutines; Long and short memory; Graphics and graphics array; String manipulations; Clock Ticker; Save, and load; and many more. Data and machine language programs; and over 75 Statements, Functions and Subroutines.

Easily adaptable on most 1802 systems. Requires 12K RAM minimum for Basic and user programs. Programs written with 64K versions coming soon with exchange privilege.

---

**RCA Cosmic Super Elf Computer $106.95**

Compare features before you decide to buy any other computer. There is no other computer on the market today that has all the desirable benefits of the Super Elf for so little money. The Super Elf is a small single board computer that does many big things. It is an excellent computer for training or for use in data and programing with its machine language and yet it is easily expanded with additional 1802's; full Basic, ASCII Keyboards, video character generation, etc.

Before you buy another small computer, see if it includes the following features: ROM, clock, State and Mode displays; Single step; Optional address displays; Power Supply, Audio Amplifier and Speaker; Fully socketed for all IC's. Real cost of warranty repairs; Full documentation.

The Super Elf includes a ROM monitor for program loading, editing and execution with Single STEP for program debugging which is not included in others at the same price. With SINGLE STEP you can see the microprocessor chip operating with the unique Quest address and data bus displays before, during and after executing instructions. No code and instruction cycle are decoded and displayed on 8 LED indicators.

An RCA 1861 video graphics chip allows you to connect to your own TV with an inexpensive video modulator to do graphics and games. There is a speaker system included for writing your own music of using many music programs already written. The speaker amplifier may also be used to drive relays for control purposes.

**Super Expansion Board with Cassette Interface $89.95**

This is truly an astounding value! This board has been designed to allow you to decide just how you want it opcioned. The Super Expansion Board comes with 4K of low power RAM fully addressable in 4K, 1802 machine language, cassette tape and a cassette interface. Provision has been made for the inclusion of Multi-plex in machine pro-

**and a cassette interface.**

A 24 key HEX keyboard includes 16 HEX keys plus lock, reset, run, wall, inhibit, memory protect, monitor select and single step. Large, on-board displays provide output and option labels high and low address. There is a 44 pin standard connector slot for PC cards and a 50 pin connect-

**or slot for the Quest Super Expansion Board. Power supply and sockets for all IC's are included in price plus a detailed 127pg. instruction manu-

**al which now includes over 40 pg.s of software info including a series of lessons to help you start and a music program and graphics target game.**

Many schools and universities are using the Super Elf as a course of study. OEM use is fine for R&D. Remember, other computers only offer Super Elf features at additional cost or not at all. Compare before you buy. Super Elf $106.95. High address option $8.50. Low address option $9.95. Custom Cabinet with drilled and labelled plexiglass front panel $24.95. Expansion Cabinet with room for 4-10 boards $41.00. NEC Add Battery Memory Saver Kit $6.95. All kits and options also completely assembled and tested. Questdata, a 12 page monthly software publication for the 1802 computer users is available by subscription for $12.00 per year. Issues 1-12 board $16.80.

Tiny Basic Cassette $10.00, on ROM $28.00, original Elf kit board $14.95. 1802 software; Mows video Graphics 3.95. Games and Music $3.00, Chip board $5.50.

---

**Rockwell AIM 65 Computer $299 - 7092 based single board with full ASCII keyboard and 20 column thermal printer, 20 char. alphanumeric display. ROM monitor, fully expandable.**

**S-100 Computer Boards**

8K Static RAM Kit $19.95 8K Static Godbout Econo 10A Kit $245.00 16K Static Godbout Econo 14 Kit $285.00 32K Static Godbout Econo X4 Kit $435.00 32K Static Godbout Econo X32 Kit $575.00 16 Dynamic RAM Kit $190.00 32 Dynamic RAM Kit $310.00 64 Dynamic RAM Kit $470.00 Video Interface Kit $129.00

**80 IC Update Master Manual $55.00** Complete IC data selector, 2700 pg, master reference guide. Updated twice since 1980. Domestic postage $3.50, 7900 Master domestic $29.95.

**Z80 Microcomputer**

16 bit 1/0, 2 MHz clock, 2K RAM, ROM breadboard space Excellent for control. Base Board $38.50, Full Kit $99.00 Monitor $30.00. Power Supply Kit $35.00.

**Video Modulator Kit**

**$8.95**

Convert TV set into a high quality monitor w/ noaa/weather. Comp. Kit w/ KIT instruct.

**Modem Kit $50.00**

State of the art, original. No tuning necessary. 163 compatible 300 baud Inexpensive acoustic coupling plans included.

**BSR Controller $39.95**


**FREE** Send for our catalog of our NEW 1980 QUEST CATALOG. Include 28c stamp.
**Los Angeles, CA**
Featuring PolyMorphic, North Star, Immai, Cromeconics, Extensys, Speeshlab products and Poly-88 Users Group software exchange. All products: 10-20% off list. We won’t be undersold! A-A-A Discount Computer How’s, 1477 Barrington, Suite 17, Los Angeles, CA 90025, 477-8470.

**San Jose, CA**
Bay area’s newest computer store. Featuring the new Texas Instruments TI 99/4A home & business computer. Software for TRS-80, Apple, PET, etc. Magazines, Hobbies, 1127 S. Bascom Ave., San Jose, CA 95128, 998-1103.

**Sarasota, FL**

**Venice, FL**

**Aurora, IL**

**Chicago, IL**

**Naperville, IL**

**Laurel, MD**
Apple & Easy Writer. Authorized dealer for both. We also sell subscriptions to "The Source" timeshare service. Also full line of home equipment. The Conn Center, Laurel Plaza, Rte. 198, Laurel, MD 20708, 792-0600.

**Worcester, MA**

**Garden City, MI**

**St. Louis, MO**

**Akron, OH**

**Portland, OR**
Ohio Scientific specialists for business and personal computers. Local service. Terminals, printers, custom programming. Full OSI product line on display! 10AM to 6PM M-F. Final Computer, 1126 NE 21st Ave., Milwaukie, OR 97222, 654-9574.

**Kingston, PA**
We support Level II and Model II. Books, magazines, programs, parts, accessories. Peripherals, free literature, free seminars, cassette, floppy filters, transformers, caps, chips, CRTs. Artico Electronics, 302 Wyoming Ave., Kingston, PA 18704, 287-1014.

**Sara, Mexico**
Learn how to utilize and program the Z-80 microprocessor to maintain your company’s records in top shape. This technique has just been introduced to Mexico. Courses, applications, maintenance, service. Digitalia, S.A. de C.V. Sara 4612, Mexico 14, D.F., 5-17-41-59.

---

**Apple II or Apple II Plus**
**999**
With 48k **1199**
(plus shipping)

**Entire System:**
with Apple II or Plus, 48k RAM, Disc II with controller **1739**
( shipped free, continental U.S.)

**SPECIAL! 3M or Memoxor Diskettes,** only $35/box of 10

**CALL TOLL FREE!**
(800) 621-5802

**ERICKSON**
Communications
5456 North Milwaukee Ave.
Chicago, Illinois 60630
(312) 631-5181

---

**TR-80®**

*SALE COMPANY*
1412 WEST FAIRFIELD DR.
P.O. BOX 8089 PENSACOLA, FL 32506
904/438-8607

**SALE COMPANY**
1412 WEST FAIRFIELD DR.
P.O. BOX 8089 PENSACOLA, FL 32506
904/438-8607

**H & B**

---

**DEALER DIRECTORY**

---

**TR-80®**

*SAVE A BUNDLE*
When you buy your TRS-80® equipment!
Use our toll free number to check our price before you buy a TRS-80®... anywhere!

**TR-80®**

---

**DELTA SYSTEMS**
P.O. Box 1181, Goleta, CA 93117

---

**Microcomputing, August 1980**

---

Dealers: Listings are $15 per month in prepaid quarterly payments, or one yearly payment of $50, also prepaid. Ads include 25 words describing your products and services plus your company name, address and phone. (No area codes or merchandise prices, please.) Call Marcia at 603-924-7136 or write Kelolaeb Microucomposing, Ad Department, Peterborough, NH 03458.
SYM-1, 6502-BASED MICROCOMPUTER

- FULLY-ASSEMBLED AND COMPLETELY INTEGRATED SYSTEM that's ready-to-use.
- ALL LSI IC'S ARE IN SOCKETS.
- 28 DOUBLE-FUNCTION KEYPAD INCLUDING UP TO 24 "SPECIAL" FUNCTIONS.
- EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY.
- KIM-1* HARDWARE COMPATIBILITY.
  The powerful 6502 B-Bit MICROPROCESSOR whose advanced architectural features have made it one of the largest selling "micros" on the market today.
- THREE ON-BOARD PROGRAMMABLE INTERVAL TIMERS available to the user, expandable to five on-board.
- 4K BYTE ROM RESIDENT MONITOR and Operating Programs.
- Single 5 Volt power supply is all that is required.
- 1K BYTES OF 2114 STATIC RAM onboard with sockets provided for immediate expansion to 4K bytes onboard, with total memory expansion to 65,536 bytes.
- USER PROM/ROM: The system is equipped with 3 PROM/ROM expansion sockets for 2316/2322 ROMs or 2716 EPROMs.
- ENHANCED SOFTWARE with simplified user interface.
- STANDARD INTERFACES INCLUDE:
  - Audio Cassette Recorder Interface with Remote Control (Two modes: 135 Baud KIM-1* compatible, Hi-Speed 1500 Baud).
  - Full duplex 20mA Teletype Interface.
  - System Expansion Bus Interface.
  - TV Controller Board Interface.
  - CRT Compatible Interface (RS-232).
- APPLICATION PORT: 15 Bi-directional TTL Lines for user applications with expansion capability for added lines.
- EXPANSION PORT FOR ADD-ON MODULES (51 I/O Lines included in the basic system).
- SEPARATE POWER SUPPLY connector for easy disconnect of the d-c power.
- AUDIBLE RESPONSE KEYPAD.

QUALITY EXPANSION BOARDS DESIGNED SPECIFICALLY FOR KIM-1, SYM-1 & AIM 65.

These boards are set up for use with a regulated power supply such as the one below, but provisions have been made so that you can add onboard regulators for use with an unregulated power supply. But, because of unreliability, we do not recommend the use of onboard regulators. All I.C.'s are socketed for ease of maintenance. All boards carry full 90-day warranty.

All products that we manufacture are designed to meet or exceed industrial standards. All components are first quality and meet full manufacturer's specifications. All this and an extended burn-in is done to reduce the normal percentage of field failures by up to 75%. To you, this means the chance of inconvenience and lost time due to a failure is very rare; but, if it should happen, we guarantee a turn-around time of less than forty-eight hours for repair.

Our money back guarantee: If, for any reason you wish to return any board that you have purchased directly from us within ten (10) days after receipt, complete, in original condition, and in original shipping carton; we will give you a complete credit or refund less a $10.00 restocking charge per board.

**SYM-1 1-SLOT MOTHERBOARD**
This motherboard uses the KIM-4* bus structure. It provides eight (8) expansion board sockets with rigid card cage. Separate jacks for audio cassette, TTY and power supply are provided. Fully buffered bus.

**SYM-2/4 16K STATIC RAM BOARD**
This board using 2114 RAMS is configured in two (2) separately addressable 8K blocks with individual write-protect switches.

**SYM-2 16K RAM Board with only**
8K of RAM (¼ populated) $329.00

**SYM-3 Complete set of chips to**
expand above board to 16K $125.00

**SYM-4 Fully populated 16K RAM**
$325.00

**SYM-5 2708 EPROM PROGRAMMER**
This board requires +5 VDC and +12 VDC, but has a DC to DC buffer so there is no need for an additional power supply. All software is resident on board ROM, and has a zero-insertion socket.

**SYM-6 EPROM BOARD**
This board will hold 8K of 2708 or 2758, or 16K of 2716 or 2516 EPROMs. EPROMs not included.

**SYM-7 COMPLETE FLOPPY-DISK SYSTEM**
See May Kilobyte for details

**SYM-8 PROTOTYPING BOARD**
This board allows you to create your own interfaces to plug into the motherboard. Etched circuitry is provided for regulators, address and data bus drivers; with a large area for either wire-wrapped or soldered IC circuitry.

**POWER SUPPLIES**

**FULL SYSTEM POWER SUPPLY**
This power supply will handle a microcomputer and up to 65K of our VAK-1 or VAK-4 RAM. ADDITIONAL FEATURES ARE:

- Over voltage Protection on 5 volts, fuse, AC on/off switch. Equivalent to units selling for $225.00 or more.
- Provides +5 VDC @ 10 Amps & +12 VDC @ 1 Amp

**VAK-EPS Power Supply**
$119.00

**VAK-EPS/AIM** – same as VAK-EPS but w/additional 24 volt unregulated (specifically for AIM 65) $149.00

**POWER SUPPLIES**

*KIM is a product of MOS Technology. Add $2.50 for shipping & handling for all except AIM 65.*
$135.00
$69.00
$155.00
$219.95
$254.95
$189.95
$24.95
$65.00
$369.95
$215.00
$349.95
$257.50
$324.95
$325.00
$1475.00

MEM-32550A

MEM-64633K

MEM-48631A

MEM-16630A

CPC-30200K

MEM-3200A & T

CRZ - 2. S.S.M.

ExpandoRAM I - SD Systems

2.5 MHz RAM board expandable from 16K to 256K

MEM-1613OK 16K kit .... $199.05
MEM-1613OA 16K A & T ... $249.95
MEM-32131K 32K kit ... $359.95
MEM-32131A 32K A & T ... $409.95
MEM-48132K 48K kit ... $559.95
MEM-48132A 48K A & T ... $619.95
MEM-64134K 64K kit ... $849.95
MEM-64134A 64K A & T ... $919.95

ExpandoRAM II - SD Systems

4 MHz RAM board expandable from 16K to 256K

MEM-16630A 16K kit .... $249.95
MEM-16630A 16K A & T ... $299.05
MEM-32631K 32K kit ... $399.95
MEM-32631A 32K A & T ... $449.95
MEM-48632K 48K kit ... $599.95
MEM-48632A 48K A & T ... $649.95
MEM-64633K 64K kit ... $849.95
MEM-64633A 64K A & T ... $919.95

32K STATIC RAM - Jade

2 or 4 MHz expandable static RAM board uses 2114's

MEM-18150K 16K 2 MHz A & T ... $249.95
MEM-18150A 16K 2 MHz A & T ... $299.05
MEM-16151K 16K 4 MHz kit ... $259.95
MEM-16151A 16K 4 MHz kit ... $309.95
MEM-32152K 32K 2 MHz kit ... $499.95
MEM-32152A 32K 2 MHz A & T ... $549.95
MEM-48154K 48K kit ... $749.95
MEM-48154A 48K A & T ... $809.95
MEM-64156K 64K kit ... $1249.95
MEM-64156A 64K A & T ... $1329.95

16K STATIC RAM - Cal Comp Sys

2 or 4 MHz 16K static RAM - a real memory bargain

MEM-16160K 16K 2 MHz A & T ... $279.00
MEM-16162K 16K 4 MHz A & T ... $329.95
MEM-16162A 16K 4 MHz A & T ... $379.95
MEM-16160B Bare board ... $239.95

PB - 1. S.S.M.

270S, 2716 EPROM board with built-in programmer

MEM-99510K Kit ... $119.95
MEM-99510A A & T ... $169.95

PRM-100 - SD Systems

270S, 2710, 2730, 2756, 2516 EPROM programmer

MEM-99520K Kit ... $175.00
MEM-99520A A & T ... $225.00

32K BYTESAVER - Cromemco

32K EPROM board with on-board 2716 programmer

MEM-32500A A & T ... $295.00

Call for your free 1980 catalog
Printers

BASE 2 - Impact Printer
132 cps, bi-directional, tractor feed, & graphics
PRM-13100 priced at $625.00

DP-9500 - Anadex
132 dot matrix, 176 column, 200 cps, & graphics
PRM-10500 Standard DP-9500 priced at $1,395.00
PRM-10510 with graphics & 2K priced at $1,495.00

LP-80 - Matchless
9 x 7 matrix, 132 column, 125 cps, bi-directional
PRM-37204 priced at $775.00

PAPER TIGER - Integral Data
132 column, parallel & serial, 150 cps, graphics
PRM-35440 IDS-440 priced at $950.00
PRM-35441 IDS-440 w/graphics priced at $1,050.00

MIPLIT - Watanabe Instruments
Intelligent graphics plotter uses 7 bit ASCII code
PRP-10080 6850P priced at $99.95

SPINWRITER - NEC
65 cps, bi-directional, letter quality with tractor
PRD-55510 with 2K buffer priced at $296.95

Motherboards

ISO-BUS - Jade
Silent, simple, and on sale - a better motherboard
MBS-061B Bare board priced at $19.95

MBS-061K Kit priced at $39.95

MBS-061A A & T priced at $49.95

MBS-121B Bare board priced at $29.95

MBS-121K Kit priced at $69.95

MBS-121A A & T priced at $89.95

MBS-181B Bare board priced at $49.95

MBS-181K Kit priced at $99.95

MBS-181A A & T priced at $139.95

Mainframes

MAINFRAME - Cal Comp Sys
12 slot S-100 mainframe with 20 amp power supply
ENC-112106 priced at $309.95
ENC-112106 A & T priced at $349.95

DISK MAINFRAME - NNC
Dual 8 drive cutouts with 8 slot motherboard
ENS-112320 with 30 amp p.s. priced at $699.95

Video Monitors

VIDEO 100 - Leedex
12" B & W video monitor with 12 MHz bandwidth
VDN-801210 priced at $139.95

VIDEO 100-80 - Leedex
81 x 24 version of Video 100 with metal cabinet
VDN-801230 priced at $189.95

B & W MONITOR - Sanyo
High quality, high resolution video monitor
VMD-700901 9" monitor priced at $209.95
VMD-701501 15" monitor priced at $279.95

13" COLOR MONITOR - Zenith
The hi rea color you’ve been promising yourself
VDC-201301 priced at $449.00

Call for your free 1980 catalog

---

Disk Drives

JADE DISK DRIVE PACKAGE
Double-D controller kit, two 8" double density disk drives, cabinet, power supply, & cables
Special package price priced at $1,295.00

DUAL 8" DRIVES - Lobo
A pair of double density Shugart drives in a cabinet
MSF-12800R 2 single sided priced at $695.00
MSF-128202 2 double sided priced at $1,425.00

HARD DISK - Lobo
10 Megabyte capacity for TRS-80 or Apple systems
MSH-12771C Apple hard disk priced at $4,395.00
MSH-12772C TRS-80 hard disk priced at $4,395.00

DISKETTES - Jade
Bargain prices on magnfericent magnetic media
5½" single sided, single density, box of 10
MMD-511003 Soft sector priced at $27.95

MMD-511103 10 sector priced at $27.95

5¼" double sided, double density, box of 10
MMD-5220103 Soft sector priced at $39.95

8" single sided, single density, box of 10
MMD-8110103 Soft sector priced at $33.95

8" single sided, double density, box of 10
MMD-8120103 Soft sector priced at $55.95

8" double sided, double density, box of 10
MMD-8220103 Soft sector priced at $57.95

FLOPPY SAVERS - Tri-Star
Protect your valuable software from spindle damage
MAA-205 5½" kit priced at $13.95

MMA-208 8" kit priced at $15.95

Software

CP/M 2.2 - Digital Research
Latest & most powerful release of CP/M
SFC-52500600D priced at $24.95
SFC-52509000M priced at $149.95
SFC-52509000F priced at $149.95

MP/M - Digital Research
Multi-user operating system for Z80 computers
SFC-52507000F priced at $295.00

PASCAL/MT - MetaTech
A powerful language for CP/M systems
SFC-73901001F 8" disk & manual priced at $99.95

SDOS - SD Systems
DOS, CBASIC2, 280 assembler/editor/linker
SFX-55001000D priced at $24.95
SFX-55001000M 51/2" disk & manual priced at $149.95
SFX-55001000F 8" disk & manual priced at $149.95

WORDSTAR - MicroPro Intl
The finest word processing package for CP/M
SFC-13600100F 8" disk & manual priced at $395.00

VISICALC - Personal Software
Visual business/accounting calculator for Apple
SFA-24101000M 5/4" disk & manual priced at $145.00

SINGLE DRIVE COPY - for Apple
Make back-up disks with just a single Disk II
SFA-51150010M 5/4" disk & manual priced at $19.95

SUPER-TEXT - Muse
Professional word-processing package for Apple
SFA-139600805M 5/4" disk & manual priced at $99.95

EPROM ERASER - L.S.Engineering
UV eraser for up to 48 EPROMs
XME-3200 A & T priced at $39.95

---

Microcomputing, August 1980 223
HEX ENCODED KEYBOARD

- Stand alone TV
- 22 char/line, 16 lines, modifications for 64 char/line included
- Parallel ASCII (TTL) input
- Video output
- VIA on board memory
- Output for computer
- Controller
- Auto scroll
- Non-destructive curser
- Curser inputs: up, down, left, right, home, EOL, EO
- Scroll up, down
- Requires +5 volts at 1.5 amps, and +12 volts at 30 mA
- All 7400 TTL chips
- Char gen. 2513
- Upper case only
- Board only $38.00 Part No. 106, with parts $145.00 Part No. 106A

T.V. TYPEWRITER

- RS-232/20mA INTERFACE

ASCII TO CORRESPONDENCE CODE CONVERTER

This bidirectional board is a direct replacement for the board inside the Trendata 1050 terminal. The on board connector provides RS-232 serial in and out. Sold only as an assembled and tested unit for $249.95. Part No. TA 1000C

ASCII KEYBOARD

- Converts video to AM-modulated RF, Channels 2 or 3. So powerful almost no tuning required. The board regulated supply makes this extremely stable. Rated very highly in Doctor Dobbs' Journal Recommended by Apple Power required is 12 volts AC. DC or $5 volts DC Board only $7.60 Part No. 107, with parts $13.50 Part No. 107A

T.V. INTERFACE

- Converts video to AM-modulated RF, Channels 2 or 3. So powerful almost no tuning required. The board regulated supply makes this extremely stable. Rated very highly in Doctor Dobbs' Journal Recommended by Apple Power required is 12 volts AC. DC or $5 volts DC Board only $7.60 Part No. 107, with parts $13.50 Part No. 107A

UART & BAUD RATE GENERATOR

- 53 Keys popular ASR-33 format • Rugged G-10 P.C. Board • Tri-mode MOS encoding • Two-Key Rollerover • MOS/DTL/TTL Compatible • Upper Case Conversion • Data and Stroke • Inversion option • Three User Definable Keys • Low contact bounce • Selectable Part- • Custom Keycaps • George Risk Model 753. Requires +5, -12 volts. $59.95 kit

ASCII KEYBOARD

- TTL & DTL compatible • Full 97 key array • Full 128 character ASCII output • Positive logic with outputs resting low • Data Strobe • Five user-definable spare keys • Standard 22 pin dual card edge connector • Requires +5VDC, 325 mA. Assembled & Tested. Cherry Pro Part No. P70-05AB. $199.95

TAPE INTERFACE

- Converts low cost tape recorder to a digital recorder • Works up to 1200 baud • Digital and square TTL signals • Output of board connects to mic. of recorder • Earphone of recorder connects to input on board
- No coils • Requires +5 volts, low power drain • Board only $17.60 Part No. 111, with parts $29.95 Part No. 111A

U.S. ELECTRONIC

- Model 332 • Used with 500/400, 912-2K, and 1120. $249.95

44 BUS MOTHER BOARD

- Has provisions for ten 44 pin (156) connectors. Space between each apart. Pin 20 is connected to X, and 22 is connected to Z for power and ground. All the other pins are connected in parallel. This board also has provisions for bypass capacitors. Board cost $15.00 Part No. 102, TTL chips $3.00 each Part No. 44W Engine

RS-232/20mA INTERFACE

- This board has two passive, opto-isolated circuits. One converts RS-232 to 20mA, the other converts 20mA to RS-232. All connections go to a 10 pin edge connector. Requires 12 and -12 volts. Board only $9.95, parts only $14.95 Part No. 7901A

COMPRINTER

- Printing Characteristics: 225 characters/second 170 lines/minute throughout. 9 horizontal x 12 vertical matrix • 96 ASCII character sets with upper and lower case • 80 character line • 5.8 lines/inch
- Buffer Memory: standard 256 bytes • optional, 2038 bytes (buffer memory option designated as Model 912-5K, $143.95)
- Paper Requirements: electrosensitive type (aluminum coated) 8 1/2 12 inch width • 3.7 inch max. (300 ft.) roll diameter
- Model 912-5 Interfacing: serial interface RS232 and 20 mA current loop • BAUD rates 110, 150, 300, 600, 1200, 2400 and 4800 are strip selectable
- Model 912-P Interfacing: parallel interface, IEEE-488 and 9 pin parallel strobe/acknowledged. Model 912-P, Part No. CPIA, $329.95, $579.95, Model 912-P, Part No. CPI, $3117, $559.95

DC POWER SUPPLY

- Board supplies a regulated +5 volts at 3 amps, +12, -12, and -5 volts at 1 amp. Power required is 8 watts AC at 3 amps, and 24 watts AC at 1.5 amps. Board only $125.00 Part No. 56085, with transformer included $42.50 Part No. 56085A

To Order: Mention part no. description, and price. In USA shipping paid by us for orders accompanied by check or money order. We accept C.O.D. orders in the U.S. only, or a VISA or Master Charge no., expiration date, signature, phone no., no shipping charges will be added. CA residents add 5.5% for tax. Outside USA add 10% for air mail postage and handling. Payment must be in U.S. dollars. Dealer inquiries invited. 24 hour order line (408) 448-0800.

Send for FREE Catalog... a big self-addressed envelope with 41 postage gets it fastest!
APPLE II PLUS

$42.95

APPLE II

$42.95

San

$25.95

OPTO-ISOLATED
PARALLEL INPUT
FOR APPLE II

part No. 7907

Mention

$25.95.

PARALLEL TRIAC
OUTPUT BOARD
FOR APPLE II

This board has 8 triacs capable of
switching 110 volt 6 amp loads (660 watts
per channel) or a total of $260 watts. Board
only $15.00 Part No. 210, with parts
$119.95 Part No. 210A.

APPLE II+

$14.95

SERIAL I/O INTERFACE

Baud rate is continuously adjustable from 0
to 30,000. • Plugs into any peripheral
connector. • Low current drain. RS-232 input
and output. On board switch selectable 5 to
8 data bits, 1 or 2 stop bits, and parity or
no parity either odd or even. • Jumper selectable
address. • SOFTWARE. Input and Output
routine from monitor or BASIC to teletype or
other serial printer. • Program for using an
Apple II for a video or an intelligent terminal.
Also can output in correspondence code to
interface with some selects. • Also
watches 120V, 12V DC or AC. Board only
$15.00 Part No. 2, with parts $42.00 Part No. 2A, assembled
$62.00 Part No. 2C.

8K EPROM PICEON

• Programs 2708's address relocation of each
4K of memory to any 4K boundary. • Power
on and reset jump off for “turnkey”
systems and computers without a front panel.
• Program saves 2700's $14.95, with 8 EPROMs
$17.95, with 8 EPROMS $21.95.

WAMECO PRODUCTS

With ELECTRONIC PARTS

FDC-1 FLOPPY CONTROLLER BOARD will
drive up to 8 drives in drive 0 to 7, on board PROM with
power boot up, work perfectly with CPM, not
enhanced, PC Board. • $49.95

FPC-2 FRONT PANEL. Finally, a MISAL size hex
disperses data. Use or instruction single $4.95
PC Board. • $49.95

MS-10-A 16... • $29.95, with jumper switches. Part
100 uses 2... type RAMS. • $94.95, $159.95 Kit

GMB-10 MOTHER BOARD, 13 slot, terminalized, 5-100 board only
$89.95 Kit

CPU-1 8080A Processor board 5-100 with
8 level vector interrupt PC Board $29.95

RTC-1 Realtime clock board. Two independent
interrupts. Software programmable
$49.95, with 32K EPROM $59.95 Kit

GMB-17 2048A 4K EPROM $29.95

MEM-1 1702E 8K EPROM $25.95

MEM-2 1/2 2708-1702 16K/2K EPROM $22.95

MEM-3 16K & Fully Buffered $21.40

S-100 BUS

ACTIVE TERMINATOR

Board only $14.95 Part No. 900, with parts
$24.95 Part No. 900A.

D.C. HAYES MICROMODEM

Fully S-100 bus compatible including 16-bit
machines and 4 MHz processors. • Two soft
ware selectable Baud rates—300 Baud and a
jumper selectable speed from 45 to 300 Baud.
(110 baud standard). Supports originate and answer
modes. • Direct-connect Microcable. This
FCC registered device has a direct access
into your local telephone system, with none of
the losses or distortions associated with acoustic
coupies and without a telephone company
supplied data access arrangement. • Auto
Answer/Auto-Call. The MICROMODEM 100
can automatically answer the phone and receive
input, it can also dial a number automatically.
• Automatic Reset and Disconnect. • Software
compatible with the D.C. Hayes Associates
80-103A Data Communications Adapter
MICROMODEM-DCA38625—$379.95

RIDMA

Tape Interface Direct Memory Access. • Record
and play programs without bootloader I/O
proms has FSK encoder/decoder and direct
connections to low cost recorder at 1200 Baud rate,
and direct connections for inputs and outputs to
a digital recorder at any baud rate 5-100 bus compatible
• Board only $35.00 Part No. 112, with parts
$110.00 Part No. 112A.

SYSTEM MONITOR

8060, 8080, or 2-80 System monitor for use
with the TIDMA board. There is no need
for the front panel Complete with documentation
$129.50.

RS-232/TTY INTERFACE

SERIAL I/O

Four Serial I/O RS-232 ports. S-100 Bus, Software
and jumper selectable baud rate (110, 300, 600,
1200, 2400-4800). 8000. • 100 in board Xul baud
rate generator. Addressing, switch selectable,
parity or no parity field, or even switch selectable.
1200, 2 stop bit, 7 or 8 bit character. Board only
$59.95, Part No. 700B. With 2-80 board $119.95, Part No. 700A.
MICROPSI DISK DRIVES

Imagine a 5 1/4" floppy disk system with all the storage capacity of an 8" floppy system, and more.

Micropolis can give you more storage because they pack more data onto every disk. Ordinary 5 1/4" floppies provide just 33 tracks per drive and store 70 to 130 bytes of data. Instead, Micropolis uses 77 tracks each with 16 sectors of 16 bytes to yield an incredible storage capacity of 3156 bytes per drive.

And that's all! Reliability doesn't just happen by accident. At Micropolis reliability is engineered into each step of manufacturing. For example, most 5 1/4" floppy disks cut costs by using a plastic case and can follower to position the read/write head. Micropolis chose to use the strength and durability of all steel cases and can follower. While it costs more, but it gives you more accurate tracking over a significantly greater lifespan which adds up to a lower cost per byte with disk. Software from Micropolis includes a comprehensive DOS, (disk operating system) and Disk Extended Basic designed for 8080/8086 microcomputer systems. The DOS is complete with an assembler, editor, file management functions and disk utilities. Micropolis BASIC is complete, a powerful programming tool for developing, testing, executing and maintaining basic programs.

The model 1043 MOD II is a single floppy disk system with 32K byes storage and includes the 5 1/2 disk Controller board. If you need more storage, or simply want to save even more money, then order the model 1053 MOD II dual disk system 63K bytes storage capacity and 5 1/2 Controller board. Micropolis DOS and disk extended BASIC are standard with both units.

Cat No. 1550 $185.00

16K MEMORY ADD-ON KIT $55.00

Everything you need to upgrade your TRS-80, Apple or Exidy! An additional 16K included.

56 Key ASCII Keyboard

Professional quality at an affordable price. Interfaces with all computers running 7-bit standard ASCII code. Packed with features such as tri-mode MOD encoding, positive or negative logic output, pulsed and level strobe, and two key rollover! Includes IBM/XT/DOS, DSI and DTL circuitry. On-board electronic shift/lock/esc keyboard assembly, with full documentation.

Cat No. 1143 $155.00

VERBATIM 5 1/4" DISKETTES 10 per box

Cat No. TYPE DESCRIPTION
1147 25/8" S-100 1 x 100
1148 25/8" S-100 1 x 200
1150 25/8" S-100 1 x 400
1151 25/8" S-100 2 x 100
1152 25/8" S-100 5 x 100
1153 25/8" S-100 10 x 100
1154 25/8" S-100 20 x 100
1155 25/8" S-100 50 x 100
1156 25/8" S-100 100 x 100

TO ORDER
Pay by check. Mastercharge, Visa, or C.O.D.
Charge card orders please include expiration date.
Payment in U.S. dollars only. Order by phone or mail to our retail store. MINIMUM $5.00. ORDER 10.00. Please include phone number and magnet you issue are ordering from. Prices valid thru last day of current year. SHIP.

I.S.A. Add $3.00 2 3 lbs.
$4.00 4 5 lbs.
$5.00 6 7 lbs.
$6.00 8 9 lbs.
$7.00 10 11 lbs.
$8.00 12 13 lbs.
$10.00 14 15 lbs.
$11.00 16 17 lbs.
$12.00 18 19 lbs.
$13.00 20 21 lbs.

SHEET ORDER
surface $1.00 over 12 x 18 in. Surface $1.00 over 12 x 24 in.
SHEET ORDER
surface $1.00 over 12 x 18 in.
SHEET ORDER
surface $1.00 over 12 x 24 in.
SHEET ORDER
surface $1.00 over 12 x 36 in.
SHEET ORDER
surface $1.00 over 12 x 48 in.
SHEET ORDER
surface $1.00 over 12 x 60 in.
SHEET ORDER
surface $1.00 over 12 x 72 in.
SHEET ORDER
surface $1.00 over 12 x 96 in.
SHEET ORDER
surface $1.00 over 12 x 120 in.
SHEET ORDER
surface $1.00 over 12 x 144 in.
SHEET ORDER
surface $1.00 over 12 x 168 in.
SHEET ORDER
surface $1.00 over 12 x 192 in.
SHEET ORDER
surface $1.00 over 12 x 216 in.
SHEET ORDER
surface $1.00 over 12 x 240 in.
SHEET ORDER
surface $1.00 over 12 x 270 in.
SHEET ORDER
surface $1.00 over 12 x 300 in.
SHEET ORDER
surface $1.00 over 12 x 330 in.
SHEET ORDER
surface $1.00 over 12 x 360 in.
SHEET ORDER
surface $1.00 over 12 x 390 in.
SHEET ORDER
surface $1.00 over 12 x 420 in.
SHEET ORDER
surface $1.00 over 12 x 450 in.
SHEET ORDER
surface $1.00 over 12 x 480 in.
SHEET ORDER
surface $1.00 over 12 x 510 in.
SHEET ORDER
surface $1.00 over 12 x 540 in.
SHEET ORDER
surface $1.00 over 12 x 570 in.
SHEET ORDER
surface $1.00 over 12 x 600 in.
SHEET ORDER
surface $1.00 over 12 x 630 in.
SHEET ORDER
surface $1.00 over 12 x 660 in.
SHEET ORDER
surface $1.00 over 12 x 690 in.
SHEET ORDER
surface $1.00 over 12 x 720 in.
SHEET ORDER
surface $1.00 over 12 x 750 in.
SHEET ORDER
surface $1.00 over 12 x 780 in.
SHEET ORDER
surface $1.00 over 12 x 810 in.
SHEET ORDER
surface $1.00 over 12 x 840 in.
SHEET ORDER
surface $1.00 over 12 x 870 in.
SHEET ORDER
surface $1.00 over 12 x 900 in.
SHEET ORDER
surface $1.00 over 12 x 930 in.
SHEET ORDER
surface $1.00 over 12 x 960 in.
SHEET ORDER
surface $1.00 over 12 x 990 in.
SHEET ORDER
surface $1.00 over 12 x 1020 in.
SHEET ORDER
surface $1.00 over 12 x 1050 in.
SHEET ORDER
surface $1.00 over 12 x 1080 in.
SHEET ORDER
surface $1.00 over 12 x 1110 in.
SHEET ORDER
surface $1.00 over 12 x 1140 in.
SHEET ORDER
surface $1.00 over 12 x 1170 in.
SHEET ORDER
surface $1.00 over 12 x 1200 in.
SHEET ORDER
surface $1.00 over 12 x 1230 in.
SHEET ORDER
surface $1.00 over 12 x 1260 in.
SHEET ORDER
surface $1.00 over 12 x 1290 in.
CompuPro S-100 Motherboards: Designed for the Future, AVAILABLE NOW

You won't have to throw your motherboards away when you upgrade your system; they are specifically designed to handle the new generation of 5 to 10 MHz CPUs coming on line, as well as present day 2 and 4 MHz systems, Faraday shielding between all bus signal lines minimizes crosstalk; additionally, when signal lines cross each other on opposite sides of the board, they do so at a 90 degree angle to minimize any chance of stray coupling. You'd expect the company that pioneered active termination to include true active termination, but we've gone one step further by splitting the termination load between each end of every bus line. And you won't have to junk your present computer box with our new motherboards—sizes fit Godbout, Vector, Imsai, TII, and similar enclosures.

These high-performance motherboards are available in "unkit" form (edge connectors and termination resistors pre-soldered in place for easy assembly), or fully assembled and ready to go.

*CK-024 20 slot motherboard with edge connectors — unit $174, assm $214
*CK-025 12 slot motherboard with edge connectors — unit $129, assm $169
*CK-026 6 slot motherboard with edge connectors — unit $89, assm $129

—CK-027 2 slot motherboard with edge connectors — unit $59, assm $79

**NOTE:** Most CompuPro boards are available in unkit form (sockets, bypass caps pre-soldered in place), or fully assembled, or qualified under the Certified System Components (CSC) high-reliability program (200 hour burn-in, more). CSC memory boards run at 8 MHz, are guaranteed to run with 6 MHz Z-80s, and draw even less power than standard models.

CAREFUL . . . NOT ALL S-100 CPU BOARDS ARE CREATED EQUAL!

You'll appreciate the extras that go into our CPU boards; take IEEE spec compatibility, for example. While others may claim compatibility, we meet all timing specs—and we'll be glad to send you timing diagrams for our CPUs to prove it (just include an SASE). You don't have to compromise on another "me-too" board . . . choose CompuPro.

THE ENHANCED/ADVANCED Z-80A S-100 CPU BOARD

Superior design in an IEEE-compatible board gives the power for future expansion as well as system flexibility. Includes all standard Z-80A features along with power on jump/clear, on-board fully maskable interrupts for interrupt-driven systems, selectable automatic wait state insertion, provision for adding up to 8K of on-board EPROMs, 4 MHz operation, and IEEE compatible 16/24 bit extended addressing. $225 unit, $295 assm, $395 CSC.

THE COMPUPRO "RAM" SERIES OF STATIC MEMORY

Recommended for commercial, industrial, and scientific applications, 6MHz standard operation, no dynamic timing problems, meets all IEEE specifications, low-power/high speed chips used throughout, extensive bypassing, careful thermal design.

S-100 STANDARD MEMORY

<table>
<thead>
<tr>
<th>Unit Price</th>
<th>Assm Price</th>
<th>CSC Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8K RAM BA</td>
<td>$169</td>
<td>$189 $239</td>
</tr>
<tr>
<td>16K RAM X-16</td>
<td>$329</td>
<td>$379 $479</td>
</tr>
<tr>
<td>24K RAM X-24</td>
<td>$449</td>
<td>$499 $599</td>
</tr>
<tr>
<td>32K RAM X-32</td>
<td>$599</td>
<td>$689 $789</td>
</tr>
</tbody>
</table>

S-100 EXTENDED ADDRESSING MEMORY

(16/24 address lines, addressable on 4k boundaries)

<table>
<thead>
<tr>
<th>Unit Price</th>
<th>Assm Price</th>
<th>CSC Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K RAM XIV</td>
<td>$299</td>
<td>$349 $429</td>
</tr>
</tbody>
</table>

S-100 BANK SELECT MEMORY

(Cromemco etc. compatible; addressable on 4k boundaries)

<table>
<thead>
<tr>
<th>Unit Price</th>
<th>Assm Price</th>
<th>CSC Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K RAM XBA-16</td>
<td>$349</td>
<td>$419 $519</td>
</tr>
<tr>
<td>24K RAM XBA-24</td>
<td>$479</td>
<td>$539 $649</td>
</tr>
<tr>
<td>32K RAM XBA-32</td>
<td>$649</td>
<td>$729 $849</td>
</tr>
</tbody>
</table>

SBC/BLC MEMORY

<table>
<thead>
<tr>
<th>Unit Price</th>
<th>Assm Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>32K RAM XI</td>
<td>n/a</td>
</tr>
</tbody>
</table>

OTHER S-100 BUS PRODUCTS

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godbout Computer Enclosure</td>
<td>$209</td>
</tr>
<tr>
<td>Active Terminator Board</td>
<td>$334.50</td>
</tr>
<tr>
<td>2700 EPROM Board (less EPROMs)</td>
<td>$85 unit</td>
</tr>
<tr>
<td>Memory Manager Board</td>
<td>$59 unit, $85 assm, $100 CSC</td>
</tr>
<tr>
<td>25 Interlace I E/O Board</td>
<td>$199 unit, $249 assm, $324 CSC</td>
</tr>
<tr>
<td>3P Plus 5 Interlace II E/O Board</td>
<td>$199 unit, $249 assm, $324 CSC</td>
</tr>
<tr>
<td>Mullens Extender Board</td>
<td>$59 kit</td>
</tr>
<tr>
<td>Mullens Relay/Opto-Isolator Control Board</td>
<td>$129 kit, $179 assm</td>
</tr>
<tr>
<td>Vector 8800V S-100 Prototyping Board</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

COMING SOON!

We've got a new board coming up that's so versatile some of our people have nicknamed it the "smorgasbord": it includes (among other things) a real-time clock, interval timer, interrupt controllers, and math processor. We've also got a board in the works that greatly enhances the throughput and performance of multi-user (2 or more terminal) systems, by assuming a lot of the overhead functions normally handled by the main CPU. Look for more details on these useful and functional products in the months ahead, or check with finer computer stores for additional information on these and other CompuPro products.
FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST AT FAIR PRICES!
1. Proven Quality  
Factory tested products only.
2. Guaranteed Satisfaction
3. Over $1,000,000.00 Inventory
1980 CATALOG NOW AVAILABLE.
Send $2.00 for your copy of the most complete catalog of computer products.
A must for the serious computer user.

APPLE/EZDS/EZPANS
TRS-80-APPLE $8.95
MEMORY EXPANSION KITS,
4116L 16K (200/250 ms.)
6 bits for $8.95

MICROPROCESSORS
3108 16 bit baud rate

STATIC RAMS
2700 Advanced Single Bit. Doro. $48.95
3200 Advanced Single Bit. Doro. $48.95
7200 Dual Bit. $48.95
7400 Dual Bit. $48.95
7500 Dual Bit. $48.95

EXPANDA II MEMORY KITS
Special TRS80 Schematic...$4.95
Expansion Interface Schematic...$4.95
Expansion Interface Connector...$7.95

HABELZENT TERMINALS
SIN $74.00

UV "Eeprom" Eraser
Model Uv1-1E $98.95
Holts 4 Eeproms at a time
Backed by 45 years experience
Model S-521...$26.00

EMAKO-20 Reg. $177.00 $99.00

MIKA 20 = $128.00

BASE II PRINTER

ACOUSTIC MODEN NOVATION CAT.
O-3000 Baud

DATA BOOKS + COMPUTER BOOKS

VERBATIM DISKETTES
$10 SPECIAL PURCHASE

UARTS/BAUD RATE

PI+100kHz 2400 1wp

KEYBOARD ENCODERS

DYNAMIC RAMS

SOCKET SPECIALS

SOCKET SPECIALS

SOCKET SPECIALS

TV CHIPS/SOUND

10 MB Assistance for $2.00

SHFIT REGISTERS

FREE CASSETTE

WE ALSO STOCK SYVECALL

SOCKET SPECIALS

V200E3

9627
9617
9612
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

NOTE: WE PROGRAM MICRO

COMPUTER SPECIALS

DISK INTERFACE

NEED SPECIAL

FREE CASSETTE

with purchase of diskette
and cassette cover with $10.00

YOU PAY ME OR I SHIP FREE

NO DISCunes ON INVENTORY

DO NOT CALL unless you pay.

CALL NOW!
**32K Static RAM**

*S100 Memory Board*

$499.95

**ASSEMBLED & TESTED**

California Computer Systems

**16K Static RAM**

same features as above. $249.00

---

**8038C**

VCO Waveform Gen

$265

**2114L**

1024x4 Static RAM, 450 ns

$450

**Power Controller**

Outlet-6 switch, EMI filtered Circuit Breaker $87.50

**EPROMS**

2708 $19.75

18Kx8 40NS

2716 $18.95

16Kx8 40NS

2725 $30.95

32K (40pin) $58.50

**Concord Computer Components**

1971 South State College

Anaheim, CA 92806

VISA MASTERCHARGE

(714) 937-0637

Check on M.D.

Cash and checks only

© 1980 Concord Computer Components

---

**Conrad Computer Components**

1971 South State College

Anaheim, CA 92806

VISA MASTERCHARGE

(714) 937-0637

Check on M.D.

Cash and checks only

© 1980 Concord Computer Components

---

**APPLE II Computer**

with full 48K of memory!

$1099.00

---

**Apple Expansion Kit**

16K Memory Add-On Kit

includes instructions, RAMs, and jumpers.

$47.50

---

**.video**

**video 100**

12" Black & White Low Cost Video Monitor

$139.00

---

**Home Study Course on Cassette**

**S1-Introduction to Microprocessors**

This seminar is intended for all non-specialists who wish to acquire a broad understanding of the basic concepts and advantages of microprocessors. It explains how microprocessors work, and discusses methods, costs, advantages and disadvantages of the main important areas of each type of microprocessor. The emphasis is on understanding the microprocessor system and its place in the computer world. Includes BASIC DEFINITIONS, SYSTEM COMPONENTS, MICROPROCESSOR APPLICATIONS, BUS SYSTEMS, WHAT TO LOOK FOR, AND IMPACT AND EVALUATION.

$299.50

---

**Voltage Regulators**

**NEGATIVE**

7905/5V

7906/6V

7915/15V

7918/16V

$2.00

---

**RESISTORS**

0.1 ohm 5% 1/2W $0.00

1 ohm 5% 1/2W $0.00

10 ohm 5% 1/2W $0.00

100 ohm 5% 1/2W $0.00

---

**Logic Probe Kit**

$17.95

---

**Reader Service index—page 241**

---

**Microcomputing, August 1980** 231
**JE608 Assembled and Tested**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>POLARITY</th>
<th>NT#</th>
<th>NT#</th>
<th>NT#</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK 1</td>
<td>Common anode red</td>
<td>270</td>
<td>1.95</td>
<td>MAR 4730</td>
</tr>
<tr>
<td>MARK 2</td>
<td>Common cathode red</td>
<td>200</td>
<td>1.94</td>
<td>MAR 4731</td>
</tr>
<tr>
<td>MARK 3</td>
<td>Common anode red</td>
<td>200</td>
<td>1.94</td>
<td>MAR 4732</td>
</tr>
<tr>
<td>MARK 4</td>
<td>Common cathode green</td>
<td>400</td>
<td>1.30</td>
<td>MAR 4733</td>
</tr>
<tr>
<td>MARK 5</td>
<td>Common cathode green</td>
<td>400</td>
<td>1.30</td>
<td>MAR 4734</td>
</tr>
<tr>
<td>MARK 6</td>
<td>Common anode yellow</td>
<td>300</td>
<td>1.25</td>
<td>DL 5070</td>
</tr>
<tr>
<td>MARK 7</td>
<td>Common cathode orange</td>
<td>300</td>
<td>1.25</td>
<td>DL 5071</td>
</tr>
</tbody>
</table>

**DISCRETE LEDS**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>POLARITY</th>
<th>NT#</th>
<th>NT#</th>
<th>NT#</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK 11</td>
<td>Common anode red</td>
<td>270</td>
<td>1.95</td>
<td>MAR 4730</td>
</tr>
<tr>
<td>MARK 12</td>
<td>Common cathode red</td>
<td>200</td>
<td>1.94</td>
<td>MAR 4731</td>
</tr>
</tbody>
</table>

**LOW PROFILE (TIN) SOCKETS**

<table>
<thead>
<tr>
<th>8 pin LP</th>
<th>14 pin ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>42</td>
</tr>
</tbody>
</table>

**SOLDERTAIL (GOLD) STANDARD**

<table>
<thead>
<tr>
<th>WIRE WRAP SOCKETS (GOLD) LEVEL</th>
<th>3/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 pin WW</td>
<td>30</td>
</tr>
<tr>
<td>16 pin WW</td>
<td>36</td>
</tr>
<tr>
<td>24 pin WW</td>
<td>44</td>
</tr>
<tr>
<td>32 pin WW</td>
<td>52</td>
</tr>
</tbody>
</table>

**1/4 WATT RESISTOR ASSEMBLIES - 5%**

<table>
<thead>
<tr>
<th>ASSY.</th>
<th>5 ea.</th>
<th>27 ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>ASSY.</td>
<td>5 ea.</td>
<td>220 ohm</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ASSY.</td>
<td>5 ea.</td>
<td>1k ohm</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ASSY.</td>
<td>5 ea.</td>
<td>4.7k ohm</td>
</tr>
</tbody>
</table>

**CAPACITOR 50 VOLT CERAMIC DISC CAPACITORS**

<table>
<thead>
<tr>
<th>VALUE</th>
<th>TYPE</th>
<th>NT#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 pF</td>
<td>COG</td>
<td>50</td>
</tr>
<tr>
<td>1.0 nF</td>
<td>C02</td>
<td>50</td>
</tr>
<tr>
<td>4.7 nF</td>
<td>C02</td>
<td>50</td>
</tr>
<tr>
<td>10 nF</td>
<td>C02</td>
<td>50</td>
</tr>
<tr>
<td>0.1 uF</td>
<td>C02</td>
<td>50</td>
</tr>
<tr>
<td>0.01 uF</td>
<td>C02</td>
<td>50</td>
</tr>
<tr>
<td>0.001 uF</td>
<td>C02</td>
<td>50</td>
</tr>
</tbody>
</table>

**RESISTORS 1/4 WATT WITH PL PLCC CAPS**

<table>
<thead>
<tr>
<th>VALUE</th>
<th>TYPE</th>
<th>NT#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 ohm</td>
<td>8L6</td>
<td>0.001</td>
</tr>
<tr>
<td>0.01 ohm</td>
<td>8L6</td>
<td>0.01</td>
</tr>
<tr>
<td>0.1 ohm</td>
<td>8L6</td>
<td>0.1</td>
</tr>
<tr>
<td>1 ohm</td>
<td>8L6</td>
<td>1</td>
</tr>
<tr>
<td>10 ohm</td>
<td>8L6</td>
<td>10</td>
</tr>
<tr>
<td>100 ohm</td>
<td>8L6</td>
<td>100</td>
</tr>
</tbody>
</table>

**MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS**

<table>
<thead>
<tr>
<th>VALUE</th>
<th>TYPE</th>
<th>NT#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 uF</td>
<td>8L6</td>
<td>0.01</td>
</tr>
<tr>
<td>0.025 uF</td>
<td>8L6</td>
<td>0.025</td>
</tr>
<tr>
<td>0.05 uF</td>
<td>8L6</td>
<td>0.05</td>
</tr>
<tr>
<td>0.1 uF</td>
<td>8L6</td>
<td>0.1</td>
</tr>
<tr>
<td>0.22 uF</td>
<td>8L6</td>
<td>0.22</td>
</tr>
<tr>
<td>0.47 uF</td>
<td>8L6</td>
<td>0.47</td>
</tr>
<tr>
<td>1 uF</td>
<td>8L6</td>
<td>1</td>
</tr>
</tbody>
</table>

**FREE CATALOG**

MAIL ORDER ELECTRONICS - WORLDWIDE
1335 SHOREWAY ROAD, BELMONT, CA 94002
PRICES SUBJECT TO CHANGE

PHONE ORDERS WELCOME
(415) 598-9007
ULTRAVIOLET INTENSITY METER

by BLAK-RAY

TWO MODELS: LONG WAVE
AND SHORT WAVE

Meter consists of a sensor cell attached to a compact (3" x 3¼" x 3") metering unit. Can be hand-held or placed directly on the surface for measuring. Can be used remotely, when connected to a meter housing by a 4-foot cable. Two models available — one for long wave and one for short wave ultraviolet. Readouts are in microwatts per square centimeter. Weight: 1 lb.

Completely assembled (includes sensor cell, reduction screen, extension cord, contrast filter and certification report).

J-221 LONG WAVE

(300mm-400mm) $242.00

J-225 SHORT WAVE

(200mm-280mm) $260.00

CONTINENTAL SPECIALTIES

Proto Clips

14-PIN CLIP PC-14 5.45
16-PIN CLIP PC-16 4.75
24-PIN CLIP PC-24 5.00
40-PIN CLIP PC-40 5.00

Jumbo 6-Digit Clock Kit

Four 4½W/100 and two 2½W/50, common alarms, 12V, 24V or 50 Hz, includes programmable controls, uses MINISH 10 clock chip, switches for hours, minutes and seconds, control panel panel, and 50Hz or 60Hz operation. Includes all components, case and wall mounting kit.

JE747 $29.95

JE701

6-Digit Clock Kit $19.95

Switchable 12-Volt Power Supply

Uses LM309K, heat sink provided, PCB construction, provides output. Switchable output, 1 amp at 6 volts. Output voltage: +12 volts. Uses MINISH 10 clock chip, switches for hours, minutes and seconds, case, control panel panel, and 50Hz or 60Hz operation. Includes all components, case and wall mounting kit.

JE2206B $19.95

DESIGNERS' SERIES

Blank Desk-Top Electronic Enclosures

- Blank desk-top enclosures are designed to blend and complement today's modern computer equipment and can be used in both industrial and home environments. The ends and sides are precision-molded with an internal die (all around) to accept top and bottom panels. The panels are then fastened to ¾" thick tabs inside the end pieces to provide maximum rigidity to the enclosure. For ease of equipment servicing, the rear bottom panel includes back on stator tracks which will result in the enclosure remaining intact. Different panel widths may be used while maintaining a common profile outline. The molded end pieces can also be used with the Jumbo 6-Digit Clock Kit.

JE300 $39.95

CONSTRUCTION:
The "DTE" Blank Desk Top Electronic Enclosures are designed to blend and complement today's modern computer equipment and can be used in both industrial and home environments. The ends and sides are precision-molded with an internal die (all around) to accept top and bottom panels. The panels are then fastened to ¾" thick tabs inside the end pieces to provide maximum rigidity to the enclosure. For ease of equipment servicing, the rear bottom panel includes back on stator tracks which will result in the enclosure remaining intact. Different panel widths may be used while maintaining a common profile outline. The molded end pieces can also be used with the Jumbo 6-Digit Clock Kit.

JE600 $69.95

Hexadecimal Encoder Keyboard

The JE600 Encoder Keyboard Kit provides two separate hexadecimal digits produced from sequential key entries to allow direct programming for 8-bit microprocessors. The encoder has two additional keys are provided for user operations with one having a bistable output available. The outputs are latched and monitored with 9 LED readouts. Also included is a key entry strobe. Features: Full 8-bit latched output for microprocessors. Sixteen user keys on one board. Eight additional keys are provided for user operations with one having a bistable output available. The outputs are latched and monitored with 9 LED readouts to verify entries. I/O interface with standard JE610 IC connector. Only +5VDC required for operation.

JE600 (Case not included) $59.95

Desk-Top Enclosure for JE600 Hexadecimal Encoder Keyboard

Compact desk-top enclosure: Color-coordinated designer's case with light-tan aluminum panels and molded-in plastic in mocha brown, includes mounting hardware, and is designed to fit a JE600 + 416 K RAM. JE600 + 8192 K RAM $124.95

JE660

$79.95

Desk-Top Enclosure for JE610 ASCII Encoded Keyboard Kit

Compact desk-top enclosure: Color-coordinated designer's case with light-tan aluminum panels and molded-in plastic in mocha brown, includes mounting hardware, and is designed to fit a JE610 + 416 K RAM. JE610 + 8192 K RAM $99.95

JE610

ASCII Encoded Keyboard Kit

The JE610 ASCII Keyboard Kit can be interfaced into any computer system. The kit comes complete with an industrial grade keyboard switch assembly (52 keys), IC's, sockets, connector, electronic components, and a double-sided printed wiring board. The keyboard assembly requires +5V @ 150mA and +12V @ 10mA for operation. This encoder generates the full 128 characters, upper and lower case ASCII set. The keyboard is buffered. Two user-define keys provided for keyboard applications. Can be used as a hardware expansion which may connect with other key systems. It utilizes +5VDC and MOS logic arrays. Easy interface with a 16-pin DIP or 18-pin edge connector.

JE610 (Case not included) $79.95

Function Generator Kit

Provides 3 basic waveforms: sine, triangle and square wave. Frequency range from 1 Hz to 1000 Hz. Output amplitude from 0 to 100% of supply voltage up to 10 volts. Uses 8-pin DIP output. Uses a 12V supply or a +12V or +24V supply. Includes P.C. board, components & instructions.

JE2206B $19.95

DIGITAL THERMOMETER KIT

Provides a dual-screen display, with a split-screen display, for both high and low temperature readings. The temperature range is from -40°F to +121°C. The kit includes an AC adapter, 9 volt battery, instructions, and a thermometer. The kit is designed for use in industrial, commercial, and educational applications.

JE300 $39.95

Microcomputing, August 1980 233
These units are ideal for micro computers. They have been removed from equipment, checked out and guaranteed.

1—5 volts @ 8 amps + 12 volts @ 2 amps + 6 volts @ 75 MA. Power supply has a 3-wire line cord and fused. Dimensions:
10½" x 5½" x 4½". Shipping weight: 16 lbs. .......... 37.50 ea. 2/70.00
2—Model 818, 5 volts at 15 amps + 12 volts at 4 amps-12 volts at 2 amps. (with line cord). .......... 35.00 ea. 2/65.00
3—+ 5 volts at 5 amps + 12 volts at 500 ma. + 6 volts at 25 ms. (line cord included). .......... 32.95 ea. 2/60.00
4—Elexon, multi output. Input: 120/240 AC, ±10%, 47-63 Hz; output: 1) 12V, 1.5A, DC, OVP; 2) 12V, 1.5A, D.C., OVP. New, in box with operating instructions. .......... 31.50
5—Power Design, Model 1210, constant voltage, DC. P.S. input: 105-125 A.C., 55 to 440 Hz. Output: 1-12 volts, 0-10 amps, DC. continuously adjustable output voltage and current limiting. .......... 139.00

**COMPUTER GRADE CAPACITORS**

<table>
<thead>
<tr>
<th>Value</th>
<th>Voltage</th>
<th>Price Per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,000 mfd 10 VDC</td>
<td>1.25</td>
<td>$1.75 ea. 2/$14.00</td>
</tr>
<tr>
<td>4,400 mfd 20 VDC</td>
<td>1.00</td>
<td>$1.00 ea. 2/$23.00</td>
</tr>
<tr>
<td>46,000 mfd 20 VDC</td>
<td>2.50</td>
<td>$3.50 ea. 2/$60.00</td>
</tr>
<tr>
<td>3,000 mfd 25 VDC</td>
<td>1.00</td>
<td>Reduced prices</td>
</tr>
</tbody>
</table>

**WIRE WRAP BOARDS**

These boards are pre-wired and removed from equipment. Easy to unwrap for setting up your own board, contains mostly 14-pin IC sockets with individual pin connections. Each board has VCC and ground planes.

Smaller board measures 8½" x 6" and has 40 to 50 sockets.
Larger board measures 13½" x 6" and has 75 to 100 sockets.

**DIABLO System Disc Drive**

SERIES 40, MODEL 43
100 tracks per inch, total capacity of 50 mega-
bits, w/Model 428 power supply, sector counter, 24 sectors, 1 fixed disc, 1 removable
disc, average access time 38 ms, PPM: 2600,
dimensions: 10 × 16" high, fits in standard
rack, equipped with full extension slides, ex-
cellent used condition. Shipped freight col-
lect.

**TRANSFORMERS**

**ROTRON WHISPER FANS**

**HEWLETT PACKARD model 200CD/rack mounted AUDIO OSCILLATOR freq:5hz to 600khz output: 160mw**

**HEWLETT PACKARD model 40D ANALOG VACUUM TUBE VOLTOMETER freq: 10hz to 4mhz voltmeter range: 1mv to 300vac in 12 ranges**

**SG-132 SWEEP SIGNAL GENERATOR**

FREQ: 15 TO 4000 Mhz
Output: AM & FM: CW 15 Hz...
...at any frequency. Crystals...x x x 50mhz or ±10B. Frequency accur.
oscilloscope for observing

**TRENDLINE PHONES**

Manufactured by I.T.T.

These units have rotary dials. Colors are: white, black, red, and green. They are packaged and have 6-foot cord and installation instructions. Used, but in good operating condition.

Minimum order $25.00. Items offered subject to prior sale. FOB, Brockton, Mass. Money order or check worder. Shipments and handling add 5%. Shipments by parcel post or UPS. No CODs. Mass. residents add 5% sales tax.
**WAMECO**

**THE COMPLETE PC BOARD HOUSE EVERYTHING FOR THE S-100 BUSS**

- **FBP-1** FRONT PANEL BOARD FOR 8080A AND Z80 SYSTEMS IMSAI COMPATIBLE.
  - PCBD ...... $54.95 KIT ...... $165.00

- **MEM-2** 16K RAM 2114's, ADDRESSABLE IN 4K BOUNDARIES.
  - PCBD ...... $31.95 KIT (LESS RAMS) ...... $80.95

- **EPM-2** 16/32K ROM USES 2716 OR 2708. ADDRESSABLE IN 4K BOUNDARIES.
  - PCBD ...... $31.95 KIT (LESS ROMS) ...... $74.95

- **CPU-1** 8080A PROCESSOR BOARD WITH VECTOR INTERRUPT.
  - PCBD ...... $31.95 KIT ...... $124.95

- **IOB-1** I/O BOARD, ONE SERIAL, TWO PARALLEL WITH CASSETTE.
  - PCBD ...... $31.95

- **FDC-1** FLOPPY DISC CONTROLLER BOARD USES 1771.
  - PCBD ...... $44.95

**FUTURE PRODUCTS:** 80 CHARACTER VIDEO BOARD, Z-80 CPU BOARD WITH ROM, 8 PARALLEL PORT I/O BOARD.

**DEALER INQUIRIES INVITED, UNIVERSITY DISCOUNTS AVAILABLE AT YOUR LOCAL DEALER**

**WAMECO, INC., P. O. BOX 877 • 455 PLAZA ALHAMBRA • EL GRANADA, CA 94018 • (415) 726-6378**

---

**Mikos Parts Assortment with Wameco and Cybercom PCBs**

- **MEM-2** with Mikos #7 16K ram with L2114 450 NSEC ...... $249.95
- **MEM-2** with Mikos #13 16K ram with L2114 250 NSEC ...... $279.95
- **CPU-1** with Mikos #2 8080A CPU ...... $4.95
- **QM-12** with Mikos #4 13 slot mother board ...... $95.95
- **RTC-1** with Mikos #5 real time clock ...... $59.95
- **EMP-1** with Mikos #10 4K 1702 less EPROMS ...... $49.95
- **EPM-2** with Mikos #11 16-32K EPROMS ...... $59.95
- **QM-9** with Mikos #12 9 slot mother board ...... $89.95
- **FPB-1** with Mikos #14 all parts for front panel ...... $144.95

**Mikos Parts Assortment are ALL FACTORY MARKED PARTS, KITS INCLUDE ALL PARTS LISTED AS REQUIRED. NO COMPLETE KIT LESS PARTS LISTED. ALL SOCKETS INCLUDED.**

**LARGE SELECTION OF LS TTL AVAILABLE**

**Microcomputing, August 1980**

---

*Reader Service index—page 241*
**PRIORITE ONE ELECTRONICS**

**MEET THE ECONORAM FAMILY………….**

**all ECONORAMS from COMPUKIT include:**

- Fully static memory used throughout to promote reliable operation and facilitate direct access (DMA).
- 4 MHz with Z80 - 5 MHz with 8085.
- Buffered in-state outputs and buffered inputs.
- All lines buffered, address and data lines buffered to 1 low power Schotky TTL load, all other lines buffered to less than 1 TTL load.
- Onboard regulator.
- DIP switch address selection and deselection (no wire jumpers).
- Two power Schottky support ICs.
- S-100 boards have WRITE strobe selection switch - allows use of memory with or without front panel.

Most ECONORAMs come in 3 forms, UNKIT (UKT) - this means that all sockets, disc capacitors are already soldered in place for easy assembly, fully assembled & tested (A&T), or qualified under the Certified System Component (CSC) high-reliability program (200 hour burn-in, guaranteed 4MHz operation over full temperature range, serial numbered, immediate replacement in event of failure with 1 year of invoice date).

---

**NEW! 32K X 8 ECONORAM X**

Static storage for the S-100 bus. Guaranteed 4 MHz operation. Configured as two 16K and one 16K block, all independently addressable, protectable & enableable. Suitable for use in phantom systems. Extra select/de-select qualifiers for systems using more than 64K of memory make this board the ideal building block for large memory systems. Maybe you can't believe the low pricing - but you can count on the Econoram performance! Also available populated to 16K. Shipping Weight 2 lbs.

<table>
<thead>
<tr>
<th>Model</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT - ECONORAM X 16K X16K</td>
<td>$329.00</td>
<td>$308.00</td>
</tr>
<tr>
<td>GBT - ECONORAM X 16K A&amp;T</td>
<td>$379.00</td>
<td>$319.00</td>
</tr>
<tr>
<td>GBT - ECONORAM X 32K X16K</td>
<td>$599.00</td>
<td>$559.00</td>
</tr>
<tr>
<td>GBT - ECONORAM X 32K A&amp;T</td>
<td>$689.00</td>
<td>$589.00</td>
</tr>
</tbody>
</table>

**ECONORAM X11IA-32**

32K BANK SELECT! S-100 compatible. 4MHz guaranteed operation (0-5V). Features two 16K blocks independently addressable on 16K boundaries. Two independent banks - individual phantom - 256 ports DIP switch selectable each board may be deselected with a single switch. Perfect for use in Alpha Micro Systems. Mannich & others. Uses 4Kx1 low power STATIC rams. Current consumption guaranteed 300mA max. Shipping Weight 2 lbs.

<table>
<thead>
<tr>
<th>Model</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT - ECONORAM X11IA-32 16K X16K</td>
<td>$349.00</td>
<td>$329.00</td>
</tr>
<tr>
<td>GBT - ECONORAM X11IA-32 16K A&amp;T</td>
<td>$419.00</td>
<td>$369.00</td>
</tr>
<tr>
<td>GBT - ECONORAM X11IA-32 24K X16K</td>
<td>$479.00</td>
<td>$449.00</td>
</tr>
<tr>
<td>GBT - ECONORAM X11IA-32 24K A&amp;T</td>
<td>$529.00</td>
<td>$479.00</td>
</tr>
<tr>
<td>GBT - ECONORAM X11IA-32 32K X16K</td>
<td>$649.00</td>
<td>$598.00</td>
</tr>
<tr>
<td>GBT - ECONORAM X11IA-32 32K A&amp;T</td>
<td>$729.00</td>
<td>$649.00</td>
</tr>
</tbody>
</table>

---

**ECO A**

**INTERFACTOR II**

The new Interfactor II I/O board incorporates one channel of serial I/O with all the features of the INTERFACTOR dual RS232 serial board, plus 3 full duplex Parallel ports. The serial section includes all the features you've come to expect - a hardware UART, on-board crystal controlled baud rate generator, hardware/software programmability, RS232 handshaking lines with real RS232 drivers, current loop & TTL drivers, full interrupts and more!! The parallel selection utilizes LSTTL octal latches for latched input & output data with 2mA drive current, attention, enable & strobe bits for each parallel port (each with selectable polarity), interrupts for each input port, separate 25 pin connector, power for maximum CPU loading, and status port for interrupt mask and port status. All in all - an incredibly flexible and easy to use board.

<table>
<thead>
<tr>
<th>Model</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT - INTERFACTOR II UKT</td>
<td>$199.00</td>
<td>$189.00</td>
</tr>
<tr>
<td>GBT - INTERFACTOR II A&amp;T</td>
<td>$249.00</td>
<td>$219.00</td>
</tr>
</tbody>
</table>

**ECONORAM 2708**

Has provisions for wait states for 4MHz operations. Configured as four 4K blocks - each independently addressable and disableable. Power-on jump. Does NOT include 2708s. Includes all support chips, sockets, regulators, heat sinks, etc. Sold in UNKIT form only. Shipping Weight 2 lbs.

<table>
<thead>
<tr>
<th>Model</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT - ECONORAM 2708 UKT</td>
<td>$85.00</td>
<td>$85.00</td>
</tr>
</tbody>
</table>

---

**ECO A**

**CONEXORAM XIV**

16K x 8 for S-100. Addressable on any 4K boundary. Direct addressing on up to 24 address lines. Fully meets IEEE S-100 bus specs. Low power, high speed static memory. Operates up to 5MHz with newest 8085/8086/8088 CPUs. Can be used with 8080, 286, 8085, 8086, 8088, Z8000, etc.

<table>
<thead>
<tr>
<th>Model</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT - ECONORAM XIV UKT</td>
<td>$299.00</td>
<td>$279.00</td>
</tr>
<tr>
<td>GBT - ECONORAM XIV A&amp;T</td>
<td>$349.00</td>
<td>$298.00</td>
</tr>
</tbody>
</table>
SAVE $100.00

WOW

PRICE

$695.00

The STAR modem from Livermore

The STAR modem from Livermore represents a significant breakthrough in the development of acoustic modems. The performance model that complies with the highest standards and is available at the lowest possible cost. And, because of its low effective cost, the STAR has become the performance leader in the industry.

The acoustic, foundation bandpass filter provides the user with excellent output and rejection to accurate processing of the received carrier, even at the signals levels of less than –74 dBm. Further, the user is protected from the possible loop discrimination yields data that is essentially jitter free.

The oscillator is built using highly stable state-variable circuitry that delivers a nearly harmonic-free, phase-coherent wide band signal that is compatible with all other 103 type modems. Because of the pureness of the sine wave, the STAR modem exceeds even the stringent harmonic requirements of all CCITT standard users without any constraint.

In order to improve performance of the modem from attempting to operate when excessive noise would produce error or cause marginal operation. The system has also a special amplitude selection circuitry capable of detecting excessive noise levels and signaling the user.

EXCLUSIVE ACOUSTIC CHAMBERS

The exclusive triple seal of Livermore's new flat mounted cups locks the hardware into the acoustic chamber yielding superior acoustic characteristics and minimal mechanical resonances. The unique design of these common chambers used throughout the entire world, the STAR offers the utmost in noise immunity and transmission reliability.

SELF TEST

The feature on the STAR allows the user to verify full operation of the acoustic modem by using the terminal in the full duplex mode. No need for remote assistance in diagnosing terminal or modem problems.

- PROGRAMMABLE Baud Rate Selection (110 to 9600)
- On-Board EPROM May Be Used in Shadow Mode, Allowing Full 64K RAM to Be Used
- On-Board USART for Synchronous or Asynchronous RS-232 Operation (On-Board Baud Rate Generator)

NEW FROM Lobo.

Assembled, tested and guaranteed by Lobo Drives

BUY CABINET AND DRIVES AND SAVE

$329.00

SWITCHES: 0-100%, 0-200%, 0-500%, 0-1000%, 0-2000%, 0-5000%, 0-10000%, 0-20000%, 0-50000%

HITACHI V302

30MHZ DUAL TRACE OSCILLOSCOPE

LIST 945.00
SALE $798.00

- TV sync-separator circuit
- High-sensitivity fms/mV
- Sweep-time magnifier (10 times)
- Z-axis input (intensity modulation)
- Signal delay line
- X-y operation
- Trace Rotation
- Complete with 2 probes
- CH2, 2C, DUAL, ADD. DIFF.
- Anti-Directional Detection Modes
- V152 Dual Trace 150MHz - no delay sweep
- LIST 695.00

TERMS: Visa, MC, BAC, Check, Money Order, U.S. Funds Only. CA residents add 6% sales tax. Minimum order $10.00. Prepaid U.S. orders only. $75.00 shipping and handling. MINIMUM $2.50. Excess refunded. Just in case...please include your phone number. Prices subject to change without notice. We will do our best to maintain prices thru Aug. 1980.

SST and CONNECTOR prices based on GOLD, not exceeding $500 per oz.

*Sale Prices are for prepaid orders only. Credit card orders will be charged the appropriate freight.
**32K S-100 EPROM CARD**

**NEW!**

**$74.95 KIT**

USES 2716’s
Blank PC Board - $34
ASSEMBLED & TESTED ADD $30

**SPECIAL:** 2716 EPROM’s (450 NS) Are $19.95 EA. With Above Kit

**KIT FEATURES:**
1. Addressable at four separate 4K blocks
2. ON BOARD BANK SELECT circuitry. (Cromemco Standard). Allows up to 256K on line!
3. Uses 2114 (40NS) 4K Static RAMs.
4. ON BOARD SELECTABLE WAIT STATES.
5. Double sided PCB board, with solder mask and silk screened layout. Gold plated contact fingers.
6. All address and data lines fully buffered.
7. Kit includes ALL parts and sockets.
8. PHANTOM is jumped to PIN 67.
9. LOW POWER, under 1.5 amps TYPICAL from the #8 Volt Bus
10. Blank PC Board can be populated as any multiple of 4K.

**16K STATIC RAM KIT-S 100 BUSS**

**PRICE CUT!**

**$225 KIT FOR 4MHZ ADD $10**

**KIT FEATURES:**
1. Addressable at four separate 4K Blocks
2. ON BOARD BANK SELECT circuitry. (Cromemco Standard). Allows up to 256K on line!
3. Uses 2114 (40NS) 4K Static RAMs.
4. ON BOARD SELECTABLE WAIT STATES.
5. Double sided PCB board, with solder mask and silk screened layout. Gold plated contact fingers.
6. All address and data lines fully buffered.
7. Kit includes ALL parts and sockets.
8. PHANTOM is jumped to PIN 67.
9. LOW POWER, under 1.5 amps TYPICAL from the #8 Volt Bus
10. Blank PC Board can be populated as any multiple of 4K.

**STEREO! S-100 SOUND COMPUTER BOARD**

At last, an S-100 board that unleashes the full power of two unbelievable General Instruments AY3-8910 NAND gate sound ic’s. Allows you under total computer control to generate an infinite number of special sound effects for games or any other program. Sounds can be called in BASIC, ASSEMBLY, LANGUAGE, etc.

**KIT FEATURES:**
- Two GI Sound Computer IC’s.
- Four Parallel I/O ports on board.
- Uses board Audio Amps or your stereo.
- On board Proto TYPING AREA
- All parts are solder-masked, silk screened with gold contacts.
- Easy, quick, and fun to build. With full instructions.
- Uses programmed I/O for MAXIMUM SYSTEM FLEXIBILITY.

Both Basic and Assembly Language Programming examples are included.

**SOFTWARE:**
SCL* is now available! Our Sound Command and Language makes writing Sound Effects programs a SNAP! SCL* also includes routines for Register /Examime-Modify, Memory /Examime-Modify, and Play-Memory, SCL* is available on CP M compatible diskette of 2708 or 2716. Diskette -$24.95. 2708 - $19.95 2716 - $29.95 . Diskette includes the source. EPROM’s are CRG at EURO5.

**RCA CMOS COMPUTER CHIP SET**

**COMPLETE KIT!**

**$84.95**

(WITH DATA MANUAL)

**BLANK PC BOARD W/DATA**

**$31**

**16K EPROM CARD-S 100 BUSS**

**PRICE CUT!**

**$59.95 KIT**

Blank PC Board - $28
Uses 2708’s!

**SPECIAL OFFER:** $14.95 each. Add $3 for 60 page Data Manual.

**TERMS:** Add $1.00 postage. We pay balance. Orders under $15 add 75c handling. No C.O.D. We accept Visa and MasterCharge. Tex. Res. add 5% tax. Foreign orders (except Canada) add 20% P & H. 90 Day Money Back Guarantee on all items. Orders over $50. add 5% for insurance.

**TRADEMARK OF DIGITAL RESEARCH. NOT ASSOCIATED WITH DIGITAL RESEARCH OF CALIFORNIA, THE SUPPLIERS OF CPM SOFTWARE.**
Expand your Horizon... or any S-100 System to Double or Quad Density Mini Floppies

Double Density Controller Boards
Kit, List $399. NOR-33011-K OUR PRICE $329
Assembled and Tested, List $499... NOR-33010-A $399
Since its introduction, the North Star Double Density Controller Board has been an item virtually impossible to obtain (except in a double density Horizon). We now have — for immediate delivery — complete double density (or quad density) disk systems OR double density controller boards only. Double density controllers work with up to 4 double or quad density drives; single, double, and quad density drives can be mixed.
Add $2.50 for shipping and insurance.

NOTE: North Star Double Density Controllers may perform satisfactorily with older Shugart SA-400 single density drives; however, North Star does not recommend or guarantee such combinations. MiniMicroMart strongly recommends the purchase of a new double density Shugart SA-400, double density MPI-51 or quad density (double sided) MPI-52.

Fantastic Savings on a "Quad" Density Upgrade for Horizon
North Star Double Density Controller Board (see above) and a quad density (double sided, double density) MPI-52 Mini Floppy Disk Drive (features superior door and disk handling mechanism). MDS-H-MQ/K, Kit form
List $999
Order NOR-33011-Q
OUR PRICE $699
MDS-H-MQ/A Assembled form, List $1099... NOR-33012-Q $759
Shipping and insurance: Add $6
Above prices for converting existing Horizon 1 to quad. For Horizon 2, order additional MPI-52
MPI-52.................................................. $379
Shipping and Insurance: Add $6

Save up to 25% on North Star Memory Boards
16K Dynamic RAM (RAM-16A/K)
Kit, List $399
Order NOR-32017-K
SPECIAL $299
Assembled (RAM-16-A/A), List $499... NOR-32016-A $420

32K (RAM-32-A/K)
Kit, List $699, Order NOR-32032-K
Assembled (RAM-32-A/A), List $739... NOR-32032-A $620
Shipping and Insurance: Add $2.50.

North Star Controllers and Disk Systems include latest version DOS, and BASIC.

North Star MDS-A DD Mini Floppy Disk System
In Stock — First Time in 2 Years!
Double Density, Kit, List $799
NOR-40001-K OUR PRICE $669
Assembled and Tested, List $899... NOR-40000-A $719
Quad Version, Kit, List $999... NOR-40003-K $836
Assembled, List $1099... NOR-40002-A $896
Above MDS-A units do not include cabinet or power supply.
Shipping and Insurance: Add $7.50
Cabinet, blue finish .................................. $29
Dual Cabinet (holds 2 drives) .................... $49

Super Special!
North Star Controller Board, Drive, Cabinet and Power Supply $709
Complete system similar to above but also includes a cabinet and an assembled/tested power supply for the drive (silver finish). Your choice of Shugart SA-400 or MPI-51 Double Density Drive or MPI-52 Quad Density Drive (MPI drives feature improved door and disk handling mechanism).
NOR-40001-L w/Controller Board in kit form and SA-400 ... $709
NOR-40001-M w/Controller Board in kit form and MPI-51 ... $709
NOR-40003-N w/Controller Board in kit form and MPI-52 ... $809
NOR-40000-L with Assembled Board and SA-400 ... $769
NOR-40000-M with Assembled Board and MPI-51 ... $769
NOR-40002-N with Assembled Board and MPI-52 ... $869
Shipping and Insurance: Add $6.

MiniMicroMart, Inc.
226 1618 James Street, Syracuse, NY 13203 (315) 422-4467 TWX 710-541-0431

Microcomputing, July 1980 239
**Terminals and Printers!**

**TELEVIDEO TVI-912C**

- OUR PRICE $789

**SOROC IQ-120**

- List $995
- SPECIAL $729

**HAZELTINE**

- 1500
- ONLY $879

**TI-810**

- TI-810 Basic Unit, $1895 . ONLY $1695
- TI-810 W/full ASCII (lower case), vertical forms control, and compressed print . $1895
- TI-745 Complete printing terminal with acoustic coupler, List $1695 . . . . $1399

**PAPER TIGER**

- IDS-440 Paper Tiger, List $995 . $895
- w/ graphics option, incl. buffer, $1194 . $989
- TRS-80 Cable . . . . . 45

**BANTAM 550**

- From Perkin-Elmer
- ONLY $799
- with anti-glare CRT
- ONLY $829

**NEC SPINWRITER**

- Terminal/Keyboard as well as RO Printer Only models available.
- CALL FOR PRICES!

**INTERTEC EMULATOR**

- Software compatible with a Soroc IQ-120, Hazeltine 1500, ADM-3A or DEC VT-52. Features block mode transmission and printer port; 12" anti-glare screen; 18 key numeric keypad; full cursor control. List $895.
- OUR PRICE $729

**INTERTUBE II**

- List $995
- ONLY $799

- 12" display, 24 x 80 format, 18-key numeric keypad. 128 upper/lower case ASCII characters. Reverse video, blinking, complete cursor addressing and control. Special user-defined control function keys, protected and unprotected fields. Line insert/delete and character insert/delete editing, eleven special line drawing symbols.

---

**MiniMicroMart, Inc.**

1618 James Street, Syracuse NY 13203 (315) 422-4467 TWX 710-541-0431

240 Microcomputing, August 1980
<table>
<thead>
<tr>
<th>R.S. Number</th>
<th>Page</th>
<th>R.S. Number</th>
<th>Page</th>
<th>R.S. Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>184</td>
<td>254</td>
<td>185</td>
<td>428</td>
<td>186</td>
</tr>
<tr>
<td>192</td>
<td>186</td>
<td>342</td>
<td>187</td>
<td>437</td>
<td>187</td>
</tr>
<tr>
<td>1762</td>
<td>187</td>
<td>372</td>
<td>188</td>
<td>437</td>
<td>188</td>
</tr>
<tr>
<td>56</td>
<td>188</td>
<td>376</td>
<td>189</td>
<td>439</td>
<td>189</td>
</tr>
<tr>
<td>319</td>
<td>189</td>
<td>377</td>
<td>190</td>
<td>441</td>
<td>190</td>
</tr>
<tr>
<td>349</td>
<td>190</td>
<td>378</td>
<td>191</td>
<td>441</td>
<td>191</td>
</tr>
<tr>
<td>451</td>
<td>191</td>
<td>379</td>
<td>192</td>
<td>444</td>
<td>192</td>
</tr>
<tr>
<td>23</td>
<td>192</td>
<td>380</td>
<td>193</td>
<td>444</td>
<td>193</td>
</tr>
<tr>
<td>33</td>
<td>193</td>
<td>381</td>
<td>194</td>
<td>444</td>
<td>194</td>
</tr>
<tr>
<td>62</td>
<td>194</td>
<td>382</td>
<td>195</td>
<td>444</td>
<td>195</td>
</tr>
<tr>
<td>27</td>
<td>195</td>
<td>383</td>
<td>196</td>
<td>444</td>
<td>196</td>
</tr>
<tr>
<td>141</td>
<td>196</td>
<td>384</td>
<td>197</td>
<td>444</td>
<td>197</td>
</tr>
<tr>
<td>102</td>
<td>197</td>
<td>385</td>
<td>198</td>
<td>444</td>
<td>198</td>
</tr>
<tr>
<td>133</td>
<td>198</td>
<td>386</td>
<td>199</td>
<td>444</td>
<td>199</td>
</tr>
<tr>
<td>133</td>
<td>199</td>
<td>387</td>
<td>200</td>
<td>444</td>
<td>200</td>
</tr>
<tr>
<td>185</td>
<td>200</td>
<td>388</td>
<td>201</td>
<td>444</td>
<td>201</td>
</tr>
<tr>
<td>15</td>
<td>201</td>
<td>389</td>
<td>202</td>
<td>444</td>
<td>202</td>
</tr>
<tr>
<td>87</td>
<td>202</td>
<td>390</td>
<td>203</td>
<td>444</td>
<td>203</td>
</tr>
<tr>
<td>74</td>
<td>203</td>
<td>391</td>
<td>204</td>
<td>444</td>
<td>204</td>
</tr>
<tr>
<td>185</td>
<td>204</td>
<td>392</td>
<td>205</td>
<td>444</td>
<td>205</td>
</tr>
<tr>
<td>154</td>
<td>205</td>
<td>393</td>
<td>206</td>
<td>444</td>
<td>206</td>
</tr>
<tr>
<td>185</td>
<td>206</td>
<td>394</td>
<td>207</td>
<td>444</td>
<td>207</td>
</tr>
<tr>
<td>15</td>
<td>207</td>
<td>395</td>
<td>208</td>
<td>444</td>
<td>208</td>
</tr>
<tr>
<td>87</td>
<td>208</td>
<td>396</td>
<td>209</td>
<td>444</td>
<td>209</td>
</tr>
<tr>
<td>74</td>
<td>209</td>
<td>397</td>
<td>210</td>
<td>444</td>
<td>210</td>
</tr>
<tr>
<td>102</td>
<td>210</td>
<td>398</td>
<td>211</td>
<td>444</td>
<td>211</td>
</tr>
<tr>
<td>133</td>
<td>211</td>
<td>399</td>
<td>212</td>
<td>444</td>
<td>212</td>
</tr>
<tr>
<td>185</td>
<td>212</td>
<td>400</td>
<td>213</td>
<td>444</td>
<td>213</td>
</tr>
<tr>
<td>15</td>
<td>213</td>
<td>401</td>
<td>214</td>
<td>444</td>
<td>214</td>
</tr>
<tr>
<td>87</td>
<td>214</td>
<td>402</td>
<td>215</td>
<td>444</td>
<td>215</td>
</tr>
<tr>
<td>74</td>
<td>215</td>
<td>403</td>
<td>216</td>
<td>444</td>
<td>216</td>
</tr>
<tr>
<td>185</td>
<td>216</td>
<td>404</td>
<td>217</td>
<td>444</td>
<td>217</td>
</tr>
<tr>
<td>15</td>
<td>217</td>
<td>405</td>
<td>218</td>
<td>444</td>
<td>218</td>
</tr>
<tr>
<td>87</td>
<td>218</td>
<td>406</td>
<td>219</td>
<td>444</td>
<td>219</td>
</tr>
<tr>
<td>74</td>
<td>219</td>
<td>407</td>
<td>220</td>
<td>444</td>
<td>220</td>
</tr>
<tr>
<td>185</td>
<td>220</td>
<td>408</td>
<td>221</td>
<td>444</td>
<td>221</td>
</tr>
<tr>
<td>15</td>
<td>221</td>
<td>409</td>
<td>222</td>
<td>444</td>
<td>222</td>
</tr>
<tr>
<td>87</td>
<td>222</td>
<td>410</td>
<td>223</td>
<td>444</td>
<td>223</td>
</tr>
<tr>
<td>74</td>
<td>223</td>
<td>411</td>
<td>224</td>
<td>444</td>
<td>224</td>
</tr>
<tr>
<td>185</td>
<td>224</td>
<td>412</td>
<td>225</td>
<td>444</td>
<td>225</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>413</td>
<td>226</td>
<td>444</td>
<td>226</td>
</tr>
<tr>
<td>87</td>
<td>226</td>
<td>414</td>
<td>227</td>
<td>444</td>
<td>227</td>
</tr>
<tr>
<td>74</td>
<td>227</td>
<td>415</td>
<td>228</td>
<td>444</td>
<td>228</td>
</tr>
<tr>
<td>185</td>
<td>228</td>
<td>416</td>
<td>229</td>
<td>444</td>
<td>229</td>
</tr>
<tr>
<td>15</td>
<td>229</td>
<td>417</td>
<td>230</td>
<td>444</td>
<td>230</td>
</tr>
<tr>
<td>87</td>
<td>230</td>
<td>418</td>
<td>231</td>
<td>444</td>
<td>231</td>
</tr>
<tr>
<td>74</td>
<td>231</td>
<td>419</td>
<td>232</td>
<td>444</td>
<td>232</td>
</tr>
<tr>
<td>185</td>
<td>232</td>
<td>420</td>
<td>233</td>
<td>444</td>
<td>233</td>
</tr>
<tr>
<td>15</td>
<td>233</td>
<td>421</td>
<td>234</td>
<td>444</td>
<td>234</td>
</tr>
<tr>
<td>87</td>
<td>234</td>
<td>422</td>
<td>235</td>
<td>444</td>
<td>235</td>
</tr>
<tr>
<td>74</td>
<td>235</td>
<td>423</td>
<td>236</td>
<td>444</td>
<td>236</td>
</tr>
<tr>
<td>185</td>
<td>236</td>
<td>424</td>
<td>237</td>
<td>444</td>
<td>237</td>
</tr>
<tr>
<td>15</td>
<td>237</td>
<td>425</td>
<td>238</td>
<td>444</td>
<td>238</td>
</tr>
<tr>
<td>87</td>
<td>238</td>
<td>426</td>
<td>239</td>
<td>444</td>
<td>239</td>
</tr>
<tr>
<td>74</td>
<td>239</td>
<td>427</td>
<td>240</td>
<td>444</td>
<td>240</td>
</tr>
<tr>
<td>185</td>
<td>240</td>
<td>428</td>
<td>241</td>
<td>444</td>
<td>241</td>
</tr>
</tbody>
</table>

*This advertiser prefers to be contacted directly.*
THE CLASSY CHASSIS

WHAT'S COOKING on the FIFTY BUS
32K STATIC RAM BOARDS

Designed for use with:
★ Existing SS50 Systems ★ SS50C Extended Address Systems

- Assembled
- Burned In
- Tested

16K... $328.12
24K... $438.14
32K... $548.15

16K and 24K Versions are socketed for 32K and require only additional 2114's for expansion.

FEATURES:
- Decoding for 4 Extended Address Lines (allows memory decoding up to 1 megabyte)
- DIP-switch to set extended addressing or disable it
- 4 separate 8K blocks, addressable to any 8K boundary by DIP-switch
- Each 8K block may be individually disabled
- Write protect either of two 16K sections
- Low power consumption — uses 2114L low power RAMS
- Fully Socketed
- Gold Bus Connectors
- Guaranteed 2MHz operation

AND NOW... GIMIX OFFERS YOU A Choice of 6800 or 6809 CPU CARDS

You can order your system to fit your needs or select one of the below featured systems. Please contact the factory for further information and availability.

Add as much memory as you need using GIMIX Static RAM Cards for the utmost in reliability.

32K 6800 SYSTEM 
Includes: Chassis, 6800 CPU, 32K RAM BOARD, I/O card 
$1,694.59

32K 6809 SYSTEM 
Includes: Chassis, 6809 CPU, 32K RAM BOARD, I/O card 
$1,844.69

32K 6809 PLUS SYSTEM 
Includes: Chassis, 32K RAM BOARD, I/O Card, and features our 6809 PLUS CPU Card with the Time of Day Clock option with battery back-up installed, as well as the 6840 Timer Package that provides 3 independent 16-bit counters.

This system also allows the following options to be added at additional cost:
- Battery back-up of the 1K RAM by substituting CMOS parts.
- A 9511 or 9512 Arithmetic Processor.
- GIMIX or SWTP Dynamic Address Translators.

EXTRA NOTES:
For 50Hz 200V C.V. POWER SUPPLY Add $30.00
80 x 24 VIDEO BOARDS — Specify Format (No Added Charge)

On Orders under $250.00 for a Single Board, or Chips, please add $10.00 Handling and we will ship Air Mail Prepaid.

On all other orders we will ship via Emery Air Freight Collect, and we will charge no handling. All orders must be prepaid in U.S. Funds. Please note that foreign checks have been taking about eight weeks for collection, so we would advise wiring money or checks drawn on a bank account in the U.S. Our bank is the Continental Illinois National Bank of Chicago, Account #73-30033. Visa or Master Charge also accepted.

FACTORY PRIME STATIC RAMS
2114L 450 ns... $5.90
300 ns... $6.40
200 ns... $6.90
4044 450 ns... $5.90
250 ns... $6.90

ADD $5.00 HANDLING ON ORDERS UNDER $200.00

GIMIX® and GHOST® are Registered Trademarks of GIMIX INC.

THE COMPANY THAT DELIVERS QUALITY ELECTRONIC PRODUCTS SINCE 1975
1337 WEST 37TH PLACE, CHICAGO, IL 60609
(312) 927-5510 • TWX 910-221-4055

Phone, write, or see your dealer for details and prices on our broad range of Boards and Systems for the SS50/SS50C bus and our AC Power Control Products for all computers.

GIMIX inc.
VII. I want to see more regular departments in Microcomputing
   A. Yes
   B. No

VIII. I bought this magazine on the newsstand because (answer only if question applies)
   A. I was looking specifically for Microcomputing
   B. The cover caught my eye

IX. I want to see more of the following kinds of articles in Microcomputing
    A. Business
    B. Construction
    C. Education
    D. Event
    E. Game
    F. Home application
    G. Human interest
    H. Programming technique
    I. Review
    J. Scientific

X. Is the advertising content of the magazine a primary reason for your buy Kilo? & Kilo?
   A. Yes
   B. No

XI. What type of computer do you own? (Check all that apply)
    A. Apple
    B. Pet
    C. T.R.S.80
    D. Atari
    E. Heath
    F. Texas Instruments
    G. Other

XII. If you are not a subscriber, please circle 500.

KiloMicrocomputer • August 1980

BOOKS

Please send me the following Microcomputing products:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Catalog #</th>
<th>Title</th>
<th>Unit Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add $1 shipping/handling

Total

Please allow 4–6 weeks for delivery. No C.O.D.s accepted.

Enclosed $      □ Check □ M.O.
Bill: □ AE □ MC □ Visa

Card #       Signature       Exp. date

Name
Address
City State Zip

Microcomputing • POB 2741 • Clinton IA 52735

SUBSCRIPTION

MICROCOMPUTING subscribers save $10 off the newsstand price.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

□ New subscription □ Renewal
□ 1 year —$25
□ 2 years —$38
□ 3 years —$53

Enclosed $      □ Check □ M.O.
Bill: □ MC □ Visa □ AE □ me

Card #       Signature       Interbank #

Name
Address
City State Zip

Microcomputing • POB 997 • Farmingdale NY 11737

Canada—$27, 1 year only, US funds
Other foreign—$35, 1 year only, US funds

30889
BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 217 CLINTON IA 52735

Microcomputing
POB 2741
Clinton IA 52735

Postage will be paid by addressee.

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
Many satisfied customers know Heath takes the risk out of buying a balanced computer system. With the Heathkit All-In-One Computer, you get 16K Random Access Memory (expandable to 48K), keyboard, video terminal and floppy disk system — together in one self-contained, compact unit — for up to hundreds of dollars less than comparable systems.

Heath now makes the All-In-One Computer more versatile than ever! The new Heathkit H77 Floppy Disk System gives the All-In-One even more data storage and recall capacity. Combined, the All-In-One and H77 Floppy Disk give you up to 300K bytes of on-line data storage — enough to hold entire files. You can mount operating system and program disks at the same time, to make computing even faster.

You can run programs written in MICROSOFT™ BASIC™ and Assembly Languages, and all current software written for the popular Heathkit H8 Computer.

Heath User's Group (HUG) will share with you a library of over 500 programs to make your computer serve you in ways you never imagined.

There's no better way to learn about computer systems — and save money — than by building one yourself.

Concise, easy-to-follow Heathkit assembly manuals show you the way, from start to finish. And a nationwide network of service centers protects your computer investment. Join the Heathkit computer family today — and pocket the savings!

For complete details on Heathkit computer systems, as well as nearly 400 other electronic kits for your home, work or pleasure, send today for your free, value-packed Heathkit catalog.

Or pick up your copy at the nearest Heathkit Electronic Center.

Heath makes the All-In-One Computer more versatile

Heathkit

SEND FOR FREE CATALOG

VISIT YOUR HEATHKIT STORE

In the U.S. and Canada, visit your nearby Heathkit Electronic Center where Heathkit products are also displayed, sold and serviced. See the white pages of your phone book. In the U.S., Heathkit Electronic Centers are units of Veritech Electronics Corporation.

CP-184
The Businessman’s Business System

MSI Business Computer Systems offer flexibility and expandability unmatched by any other microcomputer system, large or small. Our SDOS operating system is totally device independent and supports up to four users. This means that you can start with a single user, dual drive, floppy disk system today, and add up to 80 megabytes of hard disk with additional workstations tomorrow. As your business grows, your MSI system grows with you—and your software won’t become obsolete.

Perform text processing tasks at one workstation while entering sales orders on another. Add a third workstation in inventory control and a fourth in accounting. That’s expandability!!!

- MSI Inventory Software, with complete Bills of Material, provides a complete inventory control and management system for manufacturers.
- Complete manufacturing forecasting, with production pick lists, allows automatic adjustment of component inventory levels.
- All transactions resulting in any change to the inventory data base are written to audit trail files listing date, time, operator’s name, inventory item, and the changes which were made.

- Sales Order Entry/Accounts Receivable Software displays customer balances and credit standing as new orders are entered. Correct product prices and descriptions are obtained from inventory files if desired.
- Invoices are generated automatically as orders are shipped. Customer statements, with aged accounts receivable, are printed on demand.
- Purchase Order Entry/Accounts Payable Software optionally link to inventory program, in order to easily visualize inventory items which are on order.
- General Ledger programs link to the accounts receivable and accounts payable modules for easy updates and posting.

If your business is expanding and you would like to know how an MSI Computer System can help you make it more profitable, call or write Midwest Scientific Instruments, 220 W. Cedar, Olathe, Kansas 66061, (913) 764-3273, TWX 910 749 6403 (MSI OLAT), TELEX 42525 (MSI A OLAT).