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PREFACE TO THE THIRD EDITION

This book provides the beginner in formal logic with

a short introduction that is thorough enough on important

points to offer a basis for the study of more advanced

works. The first four chapters give an account of the

calculus of propositions, and the next two give an outhne

of the predicate calculus in which special attention is

given to the basic notion of satisfiability. An appendix

sketches the traditional doctrine of the syllogism and its

relation to the Boolean algebra of classes. No previous

knowledge of logic is assumed, although the historical first

section of Chapter 1 will be of interest chiefly to those

students who have some acquaintance with the traditional

logic of the syllogism.

Chapter IV was extensively revised for the Second

Edition. The present edition incorporates a number of

minor corrections and amendments. We are grateful to

reviewers for criticisms and suggestions.

Bibliographical notes to the chapters have been added

to guide the students' further reading and exercises have

been provided. It should be emphasised that the working

of exercises is just as essential to the understanding of the

bookwork in elementary logic as it is in mathematics.

A. H. B.

D. J. O'C.
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INTRODUCTION TO SYMBOLIC LOGIC

CHAPTER I

INTRODUCTORY

1. Symbolic Logic and Classical Logic. Symbolic logic

has a short history and the traditional or classical Aristote-

lian logic has a long one. Yet the difference between them

is only that of different stages of development. Classical

logic is related to symbolic logic as embryo to adult

organism. It is necessary to emphasise this point at the

outset as there has been a certain amount of controversy

over the nature and standing of symbolic logic, especially

during the last fifty years. Philosophical logicians, trained

in the classical logic, have sometimes criticised the work of

the symbolic logicians on the ground that it involved

misconceptions about the nature of logic. And symbolic

logicians have sometimes criticised the defects of the

traditional logic as though it were quite outmoded.

It is now generally agreed by logicians that modern

symbolic logic is a development of concepts and techni-

ques which were implicit in the work of Aristotle. But

this fact was for a long time obscured by the curious

history of the subject. The foundations of logic were so

brilliantly and thoroughly laid by Aristotle in the fourth

century B.C. that it seemed to most of Aristotle's successors

to be a finished science. It is now reahsed that his treatment

covered only a small (though important) branch of logic.

Moreover, the very thoroughness of his achievement was a

part cause of the failure of logicians to make any significant

contributions to the subject during the next two thousand

years.



I INTRODUCTORY

Recent studies in the history of logic have shown that

both the Greek successors of Aristotle and the medieval

scholastics made several important logical discoveries. But

the importance of these discoveries was not generally

realised at the time at which they were made and, in con-

sequence, they failed to initiate any renascence in the

development of logical theory and technique. The reason

for this was two-fold. The general behef that all the

important logical discoveries had been made by Aristotle

naturally tended to prevent philosophers from assessing

any new discovery at its true value. But a second and

more important reason was the undeveloped state of the

mathematical sciences prior to the seventeenth century.

Aristotle had introduced into logic the important notion

of a variable. This notion is to-day quite a familiar one

to educated men and women because they meet it in the

schoolroom when they are taught elementary algebra. A
variable is a symbol which can stand for any one of a given

range of values. Thus, if x^ = 4, and x is a variable which

ranges over the real numbers, the equation is true for

just two values of the variable, that is, when x takes one of

the two values +2 or — 2. The use of variables in

elementary mathematics is too familiar to need comment.

But it has become familiar through the development and

dissemination of mathematical knowledge. Aristotle's use

of variables in logic was restricted to representing the terms

used in syllogistic arguments by letters of the alphabet, in

order to bring out more clearly the logical structure of

arguments of this type. But the use of variables in symbolic

logic is much wider than this. Nor was this the only way
in which the development of mathematics contributed to

the renascence of logic.

A distinguished modern logician* has cited three charac-

teristics of symbolic logic:

* C. I. Lewis.
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(1) The use of ideograms or signs which stand directly

for concepts, instead of phonograms or signs which stand

directly for sounds and only indirectly for concepts. For

example, the multiplication sign (x) or the question

mark (?) are ideograms, as are the written characters of the

Chinese language. But the written words "multipHcation

sign" or "question mark" directly represent the spoken

English words which correspond to them, as do the words

in all languages which are written according to some sort

of phonetic rules.

(2) The deductive method. This is familiar from school

geometry. The characteristic of the method is that from a

small number of statements we can generate, by the

application of a limited number of rules, an indefinite

number of other statements, often new and surprising.

(3) The use of variables having a definite range of

significance. (This point has been mentioned already.)

Now these three characteristics of symbolic logic are

also, as is obvious, characteristics of mathematics. Thus

the development of symbolic logic has been bound up with

the development of mathematics and it is significant that

all the pioneers of the subject were either mathematicians

or philosophers with a training in mathematical methods

and an appreciation of them.

The first important name in the development of logic

from its traditional classical form into its modern symbolic

form is that of G. W. von Leibniz (1646-1716). He is

celebrated equally as a philosopher and as a mathematician,

being best known as the co-inventor, with Newton, of the

differential calculus. Before he was twenty years of age,

he published a book entitled Dissertatio de Arte Combina-

toria, in which he put forward a two-fold plan for the

reform of logic. He suggested first the establishment of a

universal scientific language (characteristica universalis) in
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which all scientific concepts could be represented by a

combination of basic ideograms. Apart from the proposal

to replace phonograms by ideograms this proposal belongs

rather to linguistics than to logic. But his second proposal

is more important. He suggested that a universal calculus

of reasoning {calculus ratiocinator) could be devised which

would provide an automatic method of solution for all

problems which could be expressed in the universal

language. Had he carried out his proposal, he would have

provided a system of symbolic logic. But his plan remained

a mere suggestion which was not developed.

The next important name in the development of symbolic

logic is that of George Boole (1815-64). Boole was a

mathematician who held the chair of mathematics at

Queen's College, Cork. His contribution consisted in the

formulation of a system of algebra in which the variables

stand for classes and the operations of "'multiplication"

and "addition" represent the various ways of combining

classes to make further classes. (The system will be

explained in the Appendix.) The system was first set out

in a small book entitled The Mathematical Analysis ofLogic

which was published in 1847 and in a subsequent work,

The Laws of Thought, Boole applied his algebra to several

branches of logic including the syllogism of the classical

logic. This was an important advance in that he showed

that the doctrine of the Aristotelian syllogism which had

hitherto been regarded as practically co-extensive with

deductive logic could be shown to be a special case of a

kind of logical algebra. And it was not long before Boole's

successors showed that Boole's algebra, in turn, was only

one of the symbolic calculi making up the body of logic.

Other important work of nineteenth-century logicians

included that of Augustus de Morgan (1806-71) on the logic

o{ relations and of W. S. Jevons (1835-82) who simplified

and developed Boole's algebra of classes. But the most
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important name is that of an American, C. S. Peirce

(1839-1914), who, in a long series of papers, largely un-

published, made far-reaching contributions to almost every

branch of logic. The magnitude of his achievement v^^as

realised only in the present century when his collected

works were published.

In the meantime, a number of mathematicians on the

continent of Europe were interesting themselves in the

foundations of mathematics. Their work, in particular

that of Gottlob Frege and Guiseppe Peano, was continued

by Bertrand Russell, now Lord Russell. In 1910, in

collaboration with A. N. Whitehead, he published Principia

Mathematica, a monumental work in which a system of

symbolic logic is elaborated and made to serve as the

foundation of the whole of mathematics. The system of

symbolic ol'~TTIStliematlcal" logic set out by Russell and

Whitehead embodied and consolidated the work of their

predecessors and brought to the public notice the meta::_

mor£llilsis™£iL.iosia.:wMcJh,,had during the

previous century. Since the publication of Principia

Maffmnaiica^ logic has been a vigorously growing

science.

Thus the slow and largely unnoticed development of

logic since the days of Leibniz culminated in a work whose

main object was mathematical. But, of course, symbolic

ISgic is not important only for studies in the foundations

of mathematics, though this is one field in which it can be

useful. It shares with the traditional logic the function of

providing a method of testing the validity of the arguments

of ordinary language and, indeed, it offers methods of

deciding the validity of types of argument which cannot be

tested by the classical logic. It provides, further, a pro-

cedure for analysing the structure of propositions.* This

* See Chapter II, Section 1, for an explanation of the term

"proposition".
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is often convenient and sometimes necessary in piiilosophica!

argument, where the imperfections and ambiguities of

everyday expression are apt to obscure the meaning of our

statements. In fact, as we might expect if symbolic logic is

a developed form of the classical logic, it does all the tasks

which the classical logic did and many others of which

classical logic was not capable.

2. The Use of Symbols. One of the functions of elemen-

tary logic is to provide methods of testing the validity of

arguments. In order to do this, we have to be able to

classify arguments into different types or kinds such that

each specimen of a given type has certain features in

common with others of the same type. The features which

arguments have in common in this way are called the logical

form of the argument. We shall be discussing logical form

in the next section and need not say anything further about

it here. But the traditional method of classifying arguments

into types or kinds which was first invented by Aristotle

involves the use of symbols. Consider, for example, the

two following pairs of arguments

:

(1) No capitalist societies are stable and some capitalist

societies are democracies ; therefore some democracies are

not stable.

(2) No negroes are Popes and some negroes are

Mohammedans; therefore some Mohammedans are not

Popes.

(3) If the price of gold rises, then imports will increase.

But imports will not increase. Therefore the price of gold

will not rise.

(4) If the valley was caused by glaciation, then scratched

boulders will be found there. But no scratched boulders

are found there. Therefore the valley was not caused by

glaciation.
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If we examine these arguments, it is easy to see (a) that

they are vahd, and (b) that there are resemblances between

(1) and (2) and between (3) and (4). Now these resem-

blances are not in the subject-matter of the argument. For

the subject-matter of (1) has nothing to do with the subject-

matter of (2). Nor has the subject-matter of (3) anything

to do with that of (4). But if we replace the three terms in

arguments (1) and (2) by the letters A, B, and C, the resem-

blance between them comes out very clearly. For both

(1) and (2) now become:

(5) No A's are B's and some A's are C's ; therefore some

C's are not B's.

Likewise, if we replace the constituent statements of (3)

and (4) by the letters p and q, we have

:

(6) Ifp, then q. But not-^. Therefore, not-/?.

Thus the use of symbols (in this case, letters of the

alphabet) enables us to bring out the features of logical

importance in arguments and so to classify them into types

to which we can apply general rules.

The symbols used in the examples given above are

variables because they can stand indifferently for any terms

in the one case, or any statements in the other. The use of

variables in logic enables us to state general rules for testing

the vahdity of arguments. Hence we can say that any

argument whatever of the type: "if no A's are B's and

some A's are C's, then some C's are not B's", is a valid

argument. And any argument whatever of the type :
" If

p, then q: but not-^. Therefore not-;?" is similarly valid.

Thus one important function of symbols in logic is to

express the generality of the rules of logic. But it is by no

means their only function. A second and almost equally

important use of symbols in logic is to give conciseness

and economy of expression to complicated statements

which would be difficult or impossible to understand if they
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were expressed in ordinary language. This use of symbols

is obvious in elementary algebra. Consider the following

pair of equivalent expressions

:

(7) The product of the sum and the difference of two

numbers is equal to the difference of the squares of the two

numbers.

(8) (a + b)(a-b) = (a' - Z)^).

It calls for a certain mental effort to grasp the meaning

of (7) whereas (8) is immediately clear to anyone who is

acquainted with the use of the symbols involved. And
where the expressions are more complex, the locutions of

ordinary language are far too long and involved to express

their meanings clearly. It would be possible to express,

without the use of mathematical symbols, a statement like

the following :
" the roots of the equation ax^ -\- bx + c —

— ^ dz \/b~ — 4ac
are given by the formula x= ". But

2a

the corresponding linguistic expression would be so

extremely cumbrous that it would be psychologically very

difficult to understand it. The advantages of conciseness

and clarity which the use of symbols gives to us become

even more marked with more sophisticated types of

mathematical reasoning. Perhaps it is possible, in theory,

to express any mathematical formula or calculation in

everyday language without the aid of a special symbolism.

But if we were to try to do this, the limits of practical

intelligibility would very soon be reached. To understand

the expressions of mathematics and to work with them, we

need a special symbolism. And the same is true of logic

once we go beyond its very simplest levels.

Nor are these the only advantages of logical symbolism.

In every science there are special technical terms which

express concepts peculiar to the science in question. And
these technical terms in mathematics and logic are often
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most conveniently symbolised by a special ideographic

notation. The most famous example of a new concept

symbolised by a special ideogram is the zero sign in arith-

metic. Greek and Roman arithmetical notation lacked

any symbol for "zero" and, in consequence, simple

arithmetical calculations Uke "6032 x 54" or "2425

divided by 25", which can nowadays be performed by a ten-

year old schoolboy, demanded considerable mathematical

ability and an enormous amount of labour. And we have

only to consider what mathematical calculation would be

like if we lacked special signs like multiplication and

addition signs, indices, integral signs and the like, to see the

importance of special ideograms to represent the operations

of mathematical calculation. In logic, we shall also need

symbols to represent logical operations in addition to the

variables mentioned above.

3. Logical Form. We have said enough about the use

of symbols in logic to show that it is not merely pedantry

to have a symboUc language into which we can translate

the logical material which we have to treat. On the

contrary, it is necessary for the comprehension and develop-

ment of logic that we should have such a language. We
must now revert to a very important topic which was

referred to briefly in the preceding section, the question of

logicalform.

The distinction between the material of which a thing is

made and the form, shape, or organisation of the thing is

a distinction familiar to common sense. A sculptor can

model a bust in clay or marble or wood or any other plastic

material. The form or shape which he imposes on his

material is the same in each case but the material differs.

Conversely, the same material may be given or may take

many different forms. A piece of lead may be moulded

how we please under the influence of heat and pressure.
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And water may be converted to ice or to steam by a change

of temperature. The notion of logical form is merely an

extension, by analogy or metaphor, of this common-sense

notion.

Such a metaphorical extension of the notion of form or

structure is familiar from other contexts. It is customary

to speak of a piece of music being in sonata form or a

poem being in sonnet form, where the notion of form is

extended or generalised to apply to things other than

material objects. And we apply, analogously, the concept

of structure, used originally with respect to material objects

like buildings or organisms, to entities which are not

thought of as material when we speak of "the structure of

society" or "the structure of the unconscious mind".

We are not, therefore, stretching the concept unduly in

talking of logical form or structure. The structure, form,

or organisation of a thing is constituted by the way in

which its parts are put together and by the mutual relations

between the parts. Thus we can speak of the logical form

of a statement or of the set of statements constituting an

argument and, in doing so, we are intending to distinguish

the form or structure of the statement or argument from

its subject-matter. Thus in the examples (1) and (2) in

Section 2 above, the terms "capitalist societies", "stable

societies", and "democracies" on the one hand, and

"negroes", "Popes", and "Mohammedans" on the other,

convey the subject-matter of the argument. But the

sentence "If no A's are B's and some A's are C's, then

some C's are not B's" gives us the form of the argument,

showing the relations between its constituent parts. It will

be seen in later chapters how we are concerned in logic

only with the form of arguments and not in any way with

their subject-matter. This is one of the reasons why we can

dispense with the words which refer to the subject-matter

and replace them by variables.
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It will be seen that the subject of the last section, tlie use

of symbols in logic, and the subject of logical form, are

closely connected. In the elementary stages of logic, one

of the main uses of a good symbolic notation is to dissect

out, as it were, and to display clearly the logical form of

the material with which we are dealing. And one of the

advantages of symbolic logic over its less developed classical

form is that it has a more complete symbolic repertory

which enables us to exhibit the logical forms of arguments

for which Aristotelian logic had no place. (Even so

simple an argument as : "If London is larger than Paris

and Paris is larger than Rome, then London is larger than

Rome", cannot be assimilated to the standard forms of

the classical logic.)

But why should logicians be interested in logical forms?

The answer is : because the validity of arguments depends

on their logical forms, and as logicians, we are interested

in validity. This may seem, at first sight, a surprising

answer. It may be thought that as we reason and debate

only in order to arrive at true conclusions, the main interest

of the logician should be truth rather than validity. But

it is obvious on reflection that two conditions are necessary

to guarantee the truth of the conclusion of any piece of

reasoning. First, the evidence or premisses from which we

make our deductions must be true. And, secondly, the

deductions themselves must be correct or valid. Of these

two conditions, logic can guarantee only the second. The

truth of those propositions which are not formally deducible

from other propositions has to be estabhshed by means

which lie outside the scope of formal logic. And lest it

should be thought surprising that the question of truth

can be divided from the question of validity in this way,

it is worth emphasising that there is in fact very little connec-

tion between these two questions.
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It is obvious that in the case of invalid argument there is

no necessary connection between the truth or falsity of the

premisses and the truth or falsity of the conclusion drawn

from these premisses. The premisses and conclusion may
present any of the four possible combinations, true, true

;

true, false; false, true; and false, false. This is why
invalid arguments are of no use or interest. But the case

of valid arguments is not, at first sight, so very different.

Of the four possible combinations of truth and falsity of

premisses and conclusion, only one is impossible, namely,

the case where the premisses are true and the conclusion is

false. Any of the other three combinations may occur.

It may seem unlikely that we can argue validly from false

premisses to a true conclusion. But the following is clearly

a valid argument

:

All Roman emperors were presidents of the U.S.A.

Lincoln was a Roman emperor.

Therefore: Lincoln was a president of the U.S.A.

And the conclusion is true, notwithstanding the falsity of

both of the premisses and the validity of the argument.

In fact, the guarantee conferred by the validity of an

argument is merely this: if the premisses of a valid

argument are true, the conclusion is certainly true also.

But where the premisses are not true, we do not know whether

the conclusion is true or false even if we are assured that

the argument is valid. Thus logic does not concern itself

directly with the factual truth of statements, even if those

statements are premisses or conclusions of arguments. And
it is concerned with truth indirectly only in so far as it is

the consequence of the validity of an argument that, given

the truth of the premisses, we may assume the truth of the

conclusion.*

• We shall see later that the validity of an argument is closely

associated with the logical truth of certain statements. But this is

quite another matter.



INFERENCE AND IMPLICATION 13

We shall therefore be concerned, in the following

chapters, with methods of testing the validity of various

forms of argument. These methods will involve attention

to the logical structure or logicalform of arguments in that

the validity of an argument is dependent on certain features

of its logical form. And in order to abstract from the subject-

matter of arguments and attend to the logical form alone

it will be convenient to represent all arguments of a certain

form by means of an appropriate symbolic notation in

order that the relevant features of the structure may be

made plain and tested. In all this, we shall be concerned

with the practical application of symbolic logic. But like

any other science, logic is not studied primarily for reasons

of utility. The development of logical techniques beyond

what is necessary to provide a test of validity for forms of

reasoning is an enterprise carried on for its own sake, like

the development of pure mathematics. There are many
branches of mathematics for which no practical application

to problems of engineering, natural science, or statistics

has yet been discovered. The same is true of the younger

science of symbolic logic. Yet even here, branches of the

subject which originally were developed for their intrinsic

interest have been found capable of practical application

and use in the most unlikely fields, from the constructing

of calculating machines to the planning of electrical circuits.

We shall be concerned in this book with the more elementary

and traditionally practical parts of the subject. But it

must be remembered that logic is now a rapidly growing

subject and that many large and almost unexplored fields

of knowledge lie beyond its present borders.

4. Inference and Implication. In Section 2 above, we
considered some examples of simple formal arguments in

order to introduce the notion of logical form. To take an

instance, (1) was set out as follows

:
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(1) No capitalist societies are stable and some capitalist

societies are democracies ; therefore some democracies are

not stable.

We could have expressed ourselves equally well thus:

(Ifl) If no capitalist societies are stable and some

capitalist societies are democracies ; then some democracies

are not stable.

But there is a difference between (1) and (la) and the

difference is important, (la) is a statement of logic to the

effect that // certain conditions are fulfilled, then certain

consequences will result. It says nothing as to whether or

not the conditions referred to in the if-clause are, in fact,

fulfilled. (1), on the other hand, is quite different. In the

premisses of (1), certain assertions are made and as a logical

consequence of these assertions a further assertion is made,

namely, the fact stated in the conclusion. Thus, in order

to be justified in asserting (1), we have to know not only

that the logical form of the argument guarantees that the

conclusion follows from the premisses but also that the

premisses are true. And, as we have seen, this last condition

is irrelevant to the logical question of validity. We are

justified in asserting (\a), on the other hand, without

prejudice to the question of the truth or falsity of the

premisses. The most violent opponent of Marxism, for

instance, could safely commit himself to (la) whereas he

certainly would not commit himself to (1). He could

commit himself to {\a) because he would be saying merely

:

"//the premisses are true, tlien the conclusion is true".

To mark this important distinction, it is usual to call

arguments like (1) inferences and statements in the form

of {\a) implications. When we make an inference, we

assume the truth of the premisses in asserting them ; and

as a consequence of the truth of the premisses and of the

logical validity of the argument, we are entitled to assert
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the conclusion. But when we commit ourselves to an

implication, we do not thereby commit ourselves to the

truth of the premisses.

It would be strictly correct in a textbook of logic to set

out all the examples as implications since we are concerned

not with the material truth of our premisses but only with

the logical vahdity of the form of expression which we are

using. Nevertheless, it is probably more usual to express

our examples as arguments, that is, in the form of an

inference seeing that our everyday argumentation, being

designed to estabhsh the truth of the conclusion, must

ordinarily be cast in this mould. We shall therefore set

out our examples as inferences where this is more convenient

and natural. And provided that the reader bears in mind

the distinction between inference and implication, no

confusion will result.

BIBLIOGRAPHICAL NOTE

Chapter I

There is no history of logic in English which takes account

of the development of symbolic logic. Bochenski (3) and
Lukasiewicz (21) are excellent on the early history of logic in its

relation to modern logic. Boehner (4) relates some develop-

ments in medieval logic to modern symbolic logic but is not

intended to be more than a sketch. The most satisfactory

treatment of the classical syllogistic logic is in Keynes (17). An
excellent simple account of the notion of logical form is given in

Langer (19).

Note.—Ths. numbers quoted in the bibliographical notes at

the end of chapters refer to the bibliography at the end of the

book.



CHAPTER II

THE CALCULUS OF PROPOSITIONS

1. Propositions and their Relations. The calculus of

propositions (also known as the propositional calculus or

the sentential calculus) is a basic part of logic and is usually

taken as a starting point for the study of symbolic logic.

We shall understand by the term "proposition" any

sentence which must be either true or false but which, of

course, cannot be both true and false. Thus "arsenic is

poisonous", "2 + 7 = 9", "Napoleon was defeated at

Waterloo" are propositions. And so are "arsenic is

nutritious", "2 + 7 = 10", and "Napoleon was victorious

at Waterloo". Thus we take "proposition" to mean

what is meant by the grammatical term "indicative

sentence". There are a number of philosophical difficulties

which arise as soon as we try to make our concept of

proposition more precise and explicit than this. But for

the purposes of logic these difficulties may be ignored.

In this branch of logic, we take propositions as our basic

units. In other words, we shall not be interested in breaking

them down into their component parts as is necessary in

testing the vahdity of certain types of arguments. Suppose,

for example, that we are examining the validity of an

argument of the following kind :

(1) All dangerous trades should be highly paid.

Mining is a dangerous trade.

Therefore, mining should be highly paid.

This is, of course, a valid argument but its validity cannot

be made plain unless we break down or analyse the pro-

positions of which the argument is composed into their

component terms. It is vaUd in virtue of certain relations

16



PROPOSITIONS AND THEIR RELATIONS 17

between the terms "mining", "dangerous trades", and

"trades which should be highly paid". We can express

the form of the argument, abstracting from its subject-

matter, if we write:

(2) AIlA'sareB's.

X is an A.

Therefore, X is a B.

Now consider the following argument which is super-

ficially similar to (1)

:

(3) If mining is a dangerous trade, then it should be

highly paid.

Mining is a dangerous trade.

Therefore, mining should be highly paid.

The subject-matter of the two arguments is identical and

the conclusion is the same in each case. Yet there is a very

important difference between them. In (3), we do not have

to break down the propositions making up the argument in

order to demonstrate its validity. For the logical structure

or form of the argument can be expressed as follows, if we
replace the proposition "mining is a dangerous trade" by
'/?' and the proposition "mining should be highly paid"

by'^':

(4) Ifp, then q.

P-

Therefore, q.

And this is clearly a valid form of argument, irrespective

of the subject-matter of the propositions which '/?'

and '^' are made to represent. It is with arguments of the

second type that we shall be concerned in our treatment of

the calculus of propositions.

We shall not, however, be concerned with the subject-

matter of propositions but only with the essential feature

common to all propositions, namely, their capacity for
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truth or falsehood. It was given above as a defining

character of a proposition that it must take one, and only

one, of the two values "true" and "false". It is usual to

call the truth or falsity of a proposition its truth-value. We
shall therefore be interested in the propositional calculus,

in propositions considered as bearing truth-values, and in the

various ways in which these propositions may be combined

and in the consequences of these combinations. This is

vague at the moment but as we proceed it will become

clearer.

We start then with the intuitive concept of "proposition"

which we take from common-sense usage. We are also

familiar from common-sense discourse with the notion

that propositions may be combined in various ways and

that they may be negated. For example, the propositions

"the barometer is faUing" and "there will be a storm" may
be combined as follows:

(5) Ifiht barometer is falling, then there will be a storm.

(6) Either the barometer is falling or there will be a storm.

(7) The barometer is falling and there will be a storm.

They may also be negated as follows

:

(8) The barometer is not falling.

(9) There will not be a storm.

And it will be immediately obvious that the compound

propositions (5) to (7) and the negated propositions (8)

and (9) also satisfy the definition of "proposition" which

was given above. That is to say, they are sentences which

take one, and only one, of the two truth-values "true" and

"false".

If now wcTieglect the meaning or content of these com-

pounded and negated propositions, we can replace the

original uncompounded and unnegated sentences by letters

of the alphabet. We then obtain the following expressions

:
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(10) irp, then q.

(11) Either p or q.

(12) p and q.

(13) not-p.

(14) not-^.

It is with expressions of this kind, compounded in varying

degrees of complexity, that we shall be concerned in the

propositional calculus.

2. Truth-Functions. The notion of a function will be

familiar from elementary mathematics. An expression is

said to be a function of a given variable or variables, if the

value of the expression is uniquely determined when the

variable or variables take a determinate value. For example,

if we have the expression

:

y = 3.\- + 2

then J is a function of x, because its value is determined as

soon as the variable x takes a value. Thus if x takes the

value 0, the value of j^ is 2 ; if x takes the value 7, the value

of >^ is 23 ; if X takes the value — 4, then the value of y is

— 10; and so on. Likewise an expression such as

:

z=.2x — Ay -^6

is a tunction of two variables x and y. And when their

values are determined, the value of z is also determined.

Thus, if X and y both take the value 1 , the value of z is 4

;

if jc is 3 and y is 4, then the value of z is — 4 ; and so on.

We find that in logic we can usefully extend this notion

of function in the following way. We have seen that

every proposition takes one of the two values "true" or

"false". And we have seen also that propositions which

are compounded or negated as shown above are also either

true or false. Moreover, the truth-value of the compounded

or negated proposition is uniquely determined by the
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truth-values of its original expressions, just as the numerical

value of a simple mathematical function is determined

by the values taken by the variables occurring in the

function.

Let us take as an example the compound sentence (1):

"The sun is shining and the temperature is 70 degrees

Fahrenheit". (1) will be true if, and only if, both its

component sentences are true. If either or both of its

component sentences are false, then (1) will itself be false.

These facts may be expressed concisely in the following way

:

Let us represent the component sentences "the sun is

shining" and "the temperature is 70 degrees Fahrenheit"

by '/?' and '^' respectively, seeing that we are concerned

not with the meanings of the sentences in question but

solely with their truth-values. Then we can represent the

dependence of the truth-value of the compound sentence

(1) on the truth-values of its component sentences as follows

:

p q P and q

true true true

true false false

false true false

false false false

The compound sentence "p and ^" is called a truth-

function of its component sentences '/?' and '^' because,

when we know the truth-values of the component sentences,

the truth-value of the compound sentence is thereby

determined. And the tabular way of representing this

dependence, set out above, is called a truth-table. It will,

of course, be obvious that the truth-table given applies to

all compound propositions in which two component

propositions are joined by "and" and not only to sentence

(1) which we took as our concrete example.

We can construct truth-tables to represent other truth-

functions in a similar way. For example, the negation of
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any proposition is a truth-function of that proposition as

shown in the following truth-table:

p not-/?

true false

false true

3. Basic Truth-Tables of the Prepositional Calculus. We
have seen that the basic material of the propositional

calculus is of two kinds : (i) letters of the alphabet p, q, r,

and so on (or sometimes Pi, p^, Pz, and so on), stand for

propositions. These letters, as used in the propositional

calculus, are known as propositional variables because they

stand indifferently for any proposition, (ii) Words like

"not", "and", "or", and "if . . . then . .
." which link

the propositional variables into truth-functional expressions,

that is to say, compound expressions like "not-/? or q", or

"if /?, then not-^" whose truth-values depend on the truth-

values of their component propositions. These linking

words are known as logical constants.

It is convenient (and conventional) to represent these

logical constants by artificial symbols thus

:

For "not-;?", we write 'r^p\

For "/? and q'\ we write 'p.q\

For "/? or q"", we write 'p^ q'.

For "if/?, then q", we write '/? D q\

It is also convenient, in order to write our truth-tables

concisely, to use the capital letter 'T' or the numeral '1'

for "true" and the capital letter 'F' or the numeral '0'

for "false". We can now go on to consider the basic

truth-functions of the propositional calculus one by one,

using this new notation.

The Contradictory Function.—If we negate any pro-

position, we obtain another proposition which is false if

the original proposition is true and true if the original
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proposition is false. Thus, if the proposition "there are

kangaroos in Australia" is true, its negation "there are no

kangaroos in Australia", or "it is false that there are

kangaroos in Australia", is false. Similarly, if the pro-

position "Nero was the first president of the United

States" is false, then its negation "Nero was not the first

president of the United States", or "it is false that Nero
was the first president of the United States", is true. We
can summarise these facts conveniently in a truth-table as

follows

:

P ^P
1

1

Thus when we prefix any proposition by the negation sign

''~', we alter its truth-value from 1 to or from to 1.

It follows that if we negate a negated proposition, we have

the original proposition: to assert '-^ '~^p' is the same as

to assert '/?'.

The Co7ijunctive Function.—This has already been

discussed above in connection with sentence (1) of Section 2.

The truth-table for the function can be set out as follows

:

P q P-Q

1 1 1

1

1

The Disjunctive Function.—A disjunctive truth-function

of propositions is a compound proposition in which two

(or more) propositions are joined into one by the word

"or". Now the English word "or" is ambiguous and has

at least two distinct meanings. Thus before we draw up

the truth-table for the disjunctive function, we have to

decide which meaning of tiie word we are going to adopt
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for the purpose of logic. If you are asked, "Will you have

tea or coffee for breakfast?" the word "or" will be under-

stood to preclude the answer "Both", although it is

possible, if eccentric, to drink both at the same meal. On
the other hand, if you are told "either John or Mary will

meet you at the station", you would not be surprised or

think that your informant had misled you if both John

and Mary were at the station to meet you.

Thus "/? or ^" can have the exclusive sense of "either

p or q but not both" or the inclusive sense of "either /;

or g or both". It has been found more convenient for the

purposes of logic to adopt the second of these two meanings

and, therefore, to interpret the word "or" in the inclusive

sense. The truth-table for the disjunctive function is

accordingly:

p q p^q

1 1 1

1 1

1 1

Thus the compound proposition 'p^ q' is true in every

case except the case in which both the component proposi-

tions are false.

The Implicative Function.—Of the logical constants

referred to above, one remains to be discussed. The

implicative function "if p, then q" is a very important

function in logic but the task of constructing a truth-table

for it and thus demonstrating it to be a truth-function of

its component propositions is not quite so simple as in the

previous cases. The reason for this is that our ordinary

colloquial use of the phrase "if . . . then" in English is

not obviously related to the truth-values of the propositions

which are linked by the phrase. In the case of the three

previous functions, on the other hand, the everyday use
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of the English words "not", "and", and "or" is fairly

obviously truth-functional. Thus we can construct the

truth-tables for these logical constants by referring to the

everyday meanings of the corresponding English words.

But how are we to construct the truth-table for the impHca-

tive function without arbitrarily distorting the usual

meaning of the phrase "if . . . then"?

Fortunately, we are able to do so by translating the

logical constant "if . . . then" into two of the logical

constants whose truth-tables we have already been able to

construct. The meaning of the expression "if/?, then ^"

is substantially equivalent to that of the expression "either

not-p or q". Thus, the sentences

:

(1) If the price of gold rises, inflation will increase;

(2) If America attacks Russia, Europe will be ruined

;

can be expressed respectively without any change of

meaning as

:

(3) Either the price of gold will not rise or inflation will

increase

;

(4) Either America will not attack Russia or Europe will

be ruined.

The difference between the two forms of expression is

merely rhetorical, the second form being somewhat less

usual than the first.

We are therefore in a position to construct the truth-

table for the implicative function indirectly, by constructing

the table for the disjunction of a negated proposition and an

unnegated proposition. We can do this in the followingway

:

p r^ p q r^ p V q

1 1 1

1

1 1 1

1 1
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Thus the truth-table for '/? D ^' is as follows

:

P g P^^
1 1 I

1

1 1

1

It will be observed that this use of "if-then" defined

as a truth-function of the antecedent proposition '/?' and the

consequent '^' is a good deal wider than that which is current

in idiomatic Enghsh. The most common use of implicative

sentences in ordinary language is to state causal or other

"necessary" connections between one fact and another,

as, for example, when I say "if the temperature of a piece

of iron is increased, then its volume is increased". Here

we mean that the truth of the consequent follows from

or is guaranteed by the truth of the antecedent. This

use corresponds, so far as the truth-values of the com-

ponent propositions and the resulting compound propo-

sition are concerned, to the first row of the truth-table

set out above. And there is an idiomatic use of implicative

sentences which corresponds to the last row of the table.

If a teacher says of a student "if he passes that examina-

tion, I'll eat my hat", he intends to imply that both

the antecedent of the implication and the consequent

are false, even though the implication itself is asserted

as true. This is, of course, nothing more than a

rhetorical way of expressing a forceful denial of the

antecedent.

Nevertheless, in spite of these analogies between the

truth-functional interpretation of "if-then" sentences and

our ordinary conversational use of such sentences, the

truth-table for the logical constant ' D ' does appear to

involve paradoxes. It follows, for example, from this

definition of the logical constant "if-then" that a true
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proposition is implied by any proposition, true or false,

and that a false proposition implies any proposition, true

or false. It does, of course, seem wildly paradoxical to main-

tain that the following are examples of true implications

:

(5) If Brutus killed Caesar, then there are lions in Africa.

(6) If Caesar killed Brutus, then there are lions in Africa.

(7) If Nero was a Christian saint, then 5+7=16.
These implications seem to common sense to be neither

true nor false but rather to be nonsensical because the

ordinary use of "if-then" in linking sentences into implica-

tions presupposes that it is the meanings of the sentences

so linked (and not their truth-values) which determine

whether the implication is true or false. This is true ; but

it is not a good reason for rejecting a truth-functional

approach to the logic of propositions. It is perhaps a good

reason for not using the word "implication" of "if-then"

sentences when they are interpreted in a truth-functional

sense. And it is, in fact, now more usual to call this

relation ^'material implication'"' to distinguish it from the

ordinary conversational use of "if-then". Nevertheless,

the truth-functional interpretation of "if-then" is a per-

fectly satisfactory one for logic. It will be seen that the

apparent paradoxes arise only because the truth-functional

sense is wider than the conversational sense. But being

wider, it includes it. Moreover, it works in practice. And
this, for our purposes, is a sufficient justification of the

novelty of the usage. We shall, therefore, take the truth-

table given above as a definition of the way in which the

logical constant ' D ' is to operate in the propositional

calculus.

4. Relations between Truth-Functions. We have seen

that it is possible to define the logical constant of the

implicative function * D ' in terms of '---'' and 'V\ It
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is also possible to define both 'V and '.
' in terms of other

logical constants. But ''~' has to be taken as a primitive

idea which we accept as undefinable in terms of any of the

other constants so far introduced. For the purposes of

the propositional calculus, we may take the truth-table

of each of the truth-functions set out above as a definition of

that function and as a rule for the use of the logical constant

occurring in the function. Thus :

P Q p^q
1 1 1

1

1 1

1

is, for our purposes, a definition of the implicative function

and a rule for the use of ' D ' in the calculus of propositions.

Since the truth-table of a given function is a definition

of that function, any other function having the same truth-

table will be equivalent to it and interchangeable with it

for all logical purposes. Thus we saw that 'r^p^q' is

equivalent to 'pZ)q' in having the same truth-table. It

can therefore be regarded as another way of defining the

implicative function, though here the definition is of another

kind, being stated in terms of other logical constants and

not in terms of truth-values.

Similarly, '/jD q' can be expressed in terms of ''-^' and

'.'as: ''^(/'.'~^)'. For example, "if this metal is heated,

it will expand" is the same as "it is false that this metal

will be heated and it will not expand". The truth-table is

as follows

:

p q ^q r^{p.^q)110 110 1010 111
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Here the final column of the table is identical with the final

column of the table for'/;D q\ Thus the expressions '/?D q\
'r^pMg', and ''^(p.^^q)' are logically equivalent and

may, for all logical purposes, be substituted one for another.

The logical constant '
.

' may be defined in terms of ''~'

and 'V, and, therefore, also in terms of ''—'' and ' D ' as

follows. (We shall use the expression '=d/' to mean "is

equivalent to by definition".)

P-^ =d/-^(~/'V~^) =df'^(P^^q)-
For example, the proposition "he is both lazy and stupid"

means the same as "it is false that either he is not lazy or he

is not stupid" and "it is false that if he is lazy then he is

not stupid". The constant 'V may similarly be defined

in terms of ' '^' and '
.

', and of ' '--'' and ' D '

:

P^ q =df '^{r^p.'^q) =^fr^p Oq.

Thus the proposition "this letter is either a forgery or

important evidence" is logically equivalent to "it is false

that this letter is both not a forgery and not important

evidence" and to "if this letter is not a forgery, then it is

important evidence".

Summarising, we have:

i\) p^q =df^P^ q =d/^(P-^q)-
(2) p.q =^f^(r^py ^q) =^^^(p ^'-^q).

(3) pyq=df^(^P- ^q) =df^P^q-
It must be remembered that, in each case, what we mean

by saying that these expressions are equivalent is that they

have the same truth-table. This was shown above for the

equivalences of (1), The reader should verify the other

equivalences by constructing the appropriate truth-tables.

5. Further Logical Constants. It will be seen from what

has been said above about logical constants controlling

two variables, such as "and" or "if-then", that they are

defined by a characteristic truth-table consisting of four
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digits, each of which is either 1 or 0. Thus the characteristic

truth-table for the conjunctive function is 1000 (writing

the column horizontally for convenience) and the charac-

teristic truth-table for the implicative function is 1011.

These numbers are called the truth-table numbers or matrix-

numbers of the truth-function in question. Thus the

matrix-number of the disjunctive function is 1110.

It will also be obvious from what has been said that any

two functions which have the same matrix-number such as

'/? D^' and '-^pW q' are, for logical purposes, equivalent

and interchangeable. The possibility of representing

functions by numbers in this way raises the question : how
many possible different functions of two variables are there?

In other words, in how many different ways may four places

be filled by the numbers 1 and 0? Clearly, the answer is

2x2x2x2, that is 2* or 16 different ways.

Now of these sixteen possible functions, we have con-

sidered only three, namely, 1000, 1011, and 1110. How
many of the others do we need to take account of? Not all

of them are logically interesting, but there are several others

which are worth examining. We shall look at three of them.

The Equivalence Function.—Two propositions are said to

be equivalent, or more commonly, materially equivalent,

when they have the same truth-value. It is sometimes

convenient in the propositional calculus to have a symbolic

method of representing this equivalence and it is ordinarily

expressed by the symbol ' =
'. Thus '/? — 9' is true if

'/?' and '^' have the same truth-value. Otherwise it is false.

The truth-table is therefore as follows

:

1 1 1

1

1

1
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Thus the matrix-number characterising the equivalence

function is 1001.

There is no very common expression in English corre-

sponding to the equivalence function. The only idiomatic

way of expressing this function in English seems to be by

the use of the phrase "if and only if". The proposition

"he will pass if, and only if he works hard" is true if the

component propositions "he will pass" and "he will work

hard" are both true and also if they are both false. It is

false if the first is false and the second true or if the first is

true and the second false. Moreover, it has the same

meaning as the conjunction of the two implications "if he

works hard, then he will pass" and "if he passes, then he

will work hard". Thus '/? = ^' is equivalent to the con-

junctive function ''p'Dq.q'D p\ And if we construct the

truth-table for the latter function, we shall see that it is

identical with the truth-table for '/> — ^
' set out above.

p q p-Dq q-Dp p^q.qDp

1 1 1 1 1

1 1

1 1

1 1 1

It should be noted that just as in the case of the implica-

tive function we arrive at apparently paradoxical results by

neglecting the meanings of the propositions with which we

are dealing and attending only to their truth-values, so we
arrive at similarly paradoxical cases of the equivalence

function. This is not surprising, seeing that equivalence

can be defined in terms of a conjunction of implicative

functions. Thus the proposition "Nero was a Roman
emperor" is equivalent to the proposition "all men are

mortal", because both are true. And the proposition "the

earth is flat" is equivalent to the proposition "Russia

invaded Germany in 1941", since both are false. In fact,
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any true proposition is equivalent to any other true pro-

position (or to itself) ; and any false proposition is equivalent

to any other false proposition (or to itself). To mitigate

the strangeness of this use of the word "equivalent" it is

common to translate the expression 'p = q"" as "p is

materially equivalent to q".

The strangeness of this usage need not trouble us, for we

shall find, as in the case of the implicative function, that

the definition of the function, given by its truth-table, works

quite satisfactorily. Logical rules have, after all, to be

perfectly general in their application and need not be

restricted to the notions conveyed by ordinary language,

provided that they do cover those notions. And the use of

' =
' outlined above does cover the ordinary meaning of

"if and only if". But it legislates for other cases as well

which in ordinary language have no conventional mode of

expression.

The Alternative Function.—We decided above that the

word "or" has two meanings in English and that for the

purposes of the basic logical constants we selected the

inclusive sense of the word. That is to say, 'p^ q' was to

be read as "either p or q and possibly both are true".

But it is easy, on the basis of the constants already

introduced, to define the exclusive "or" and to construct

its truth-table. Let us use the symbol 'A' for the exclusive

"or". Then the truth-table will be:

P q P t^q

1 I

1 1

1 1

And this is also the truth-table for '((p V ^). -^ (P-q))' as the

reader may easily verify for himself. Thus:

P hq ^ df ((pyq).^ ip.q)) = as ((p V q).{^p V --
q)).



32 THE CALCULUS OF PROPOSITIONS

The Stroke Function.—We introduced as basic logical

constants ''--'', 'V, '
.

', and ' D '. And we have defined
'=' and 'A' in terms of these. We have seen too that

'V, '
.

', and ' D ' are definable in terms of each other with

the help of the primitive constant ' '^\ The fact that logical

constants are interdefinable in this way leads us to ask

"How many of these constants are really indispensable for

building up our calculus of propositions?". From the

results we have already arrived at, we have seen that we
can dispense with all but two. For ' D ' and '

.

' can be

defined in terms of '--«-'' and 'V, and 'V can be defined in

terms of ''~' and '
.

' or, alternatively, in terms of ''-^' and
' D '. Can the number of indispensable constants be

reduced still further? The answer is that we can dispense

with all logical constants •save one. (There are two ways

in which this can be done.) The function which we

shall use for this purpose is known as the stroke-function

and it is defined as follows: 'plq' is to be read "at least

one of/? and q is false". The truth-table will be:

P <1 Piq

1 1

1 1

1 1

1

It is clear that this function, being read as "at least one of

p and q is false" is equivalent to ' ^^p y r^q\

Let us now see how the logical constants which we

have taken as basic can be defined in terms of the stroke-

function.

(a) r^p= afPlP-

For if either '/?' is false or '/?' is false, then obviously '/?' is

false. A consideration of the truth-tables will make the

identity clear.
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pIp10 110
1 1

{b) p-q=df{plq)l{plq)-

Since 'pjp' is equivalent to ' '^ p\' (plq)l(plq)' is equivalent

to ''^(p/q)''. And since '{pjqY means "at least one of/?

and q is false", '

"^{plqY means "it is false that at least one

of /7 and q is false" or "both/? and q are true", i.e. '(p.q)\

(c) P^q-^cifiplpm/qy-

Since '{p/py is equivalent to '~/7', the right-hand side of

this definition may be read '^^p/r^ q\ which reads "either

noi-p or not-^ is false". And this, in turn, may be read as

" either /7 or q is true", i.e \p V q)'.

(d) p^q=dfPKq/q)-
Here the right-hand side of the definition is equivalent to

'p'l'^q', which can be read as "either/? is false or not-^

is false" or "either p is false or q is true", i.e. 'r^ p^ q\
which we have already seen to be equivalent to '/? "Dq".

Thus it is clearly possible to write all the expressions of

the propositional calculus in terms of propositional

variables p,q,r... and a single logical constant, the stroke.

But what we gain in economy of basic concepts by the use

of the stroke as our single constant, we lose in psychological

obviousness. Clearly,

('^p.q)^q

is much more readily understood than

:

(i(p/p)/qmplp)lqmq/ql

But these expressions are equivalent, as the reader may
verify by applying the definitions given above to transform

one expression into the other or by constructing the truth-

tables.



CHAPTER III

THE CALCULUS OF PROPOSITIONS
{continued)

1. The Truth-Table Method of Testing the Validity of

Arguments. So far we have been using truth-tables merely

as a convenient device for explaining the notion of truth-

functional dependence. We shall now proceed to use them

in what will seem to most readers to be a more practical

and interesting way, namely, as a test of the validity of

arguments. But before we can apply them in this way,

there are several rules of construction and procedure which

have to be considered. We have been concerned so far

with very simple function^ of one or two variables. But we

have to be prepared to deal with arguments of considerable

complexity involving truth-functional expressions of several

variables. Our procedure, up to now, has taken for

granted, as being obvious in simple cases, several rules

which have to be made quite explicit before we proceed to

deal with cases of greater complexity.

Let us first consider the question of the number of

propositional variables involved in truth-functional ex-

pressions. The truth-table for the contradictory function,

given above, deals with the truth-values of one propositional

variable '/?', and has two rows and two columns. The two

rows exhaust the possible combinations of truth-values

which can be assigned to the variable '/?' and its negation.

And of the two columns, the first contains the possible

truth-values of '/?' and the second the corresponding

values of 'not-j?'. Thus:

P ^ P

\ o"
1

34
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When we turn to a truth-function of two variables '/?'

and 'q\ the position is more complex. Let us take as an

example the disjunctive function:

P q P"^ q

1 1 1

1 1

1 1

Here we have four rows and three columns. It will be seen

that the four rows of the columns beneath the variable

'/?' set out the truth-values in the order 11 00 and the column

beneath '^' sets out the truth-values of '^' in the order 1010.

They are set down in this way so that the four possible

combinations of the truth-values of '/?' and '^', namely,

11, 10, 01, and 00 are all given. It will be seen later why it

is essential that all the possible combinations of the truth-

values of the propositional variables should be given.

Thus a truth-table of one variable sets down the truth-

values of that variable in the order 10. And a truth-table

of two variables sets down the truth-values of the first

variable in the order 1100 and the truth-values of the

second variable in the order 1010.

Now let us suppose that we have to construct a truth-

table for a propositional expression containing three

variables, say:

(/7V/)D(^V/-).

We have seen that a function of one variable has 2^ or

two truth-possibihties and a function of two variables has

2^ or four truth-possibilities. We need now to know how
many truth-possibilities there are for a function of three

variables like the one given above. Clearly there will be

2^ or eight. For the third variable has two truth-possibili-

ties, 1 and 0, and each of these has to be combined with
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the four truth-possibilities of the first two variables. We
shall therefore need eight rows in the truth-table.

We now have to decide how the truth-values are to be

set down in order to cover all the eight truth-possibilities.

It will be seen that the following order will satisfy this

requirement (though it is not, of course, the only possible

one):

p q r

1 1 1

1 1

1 1

1

1 1

1

1

We can now summarise what has been said above and

generalise it for truth-functions of any number of variables

in the following two rules

:

(1) A truth-function of n variables needs 2'* rows to

provide for all its truth-possibilities.

(2) The order of arrangement in columns of the truth-

values of each of the variables is as follows : where n

is the total number of variables, the column under

the wth variable contains 2"*"^ sets of 2"~"* I's

followed by 2"-"* O's.

These rules may be exemplified as follows

:

Case 1.—Suppose we have a function of two variables.

Then (i) there will be 2^ or four rows, (ii) The column

under the first variable will consist of 2^~^ or 2", that is,

one set of 2^~^ or two I's followed by the same number of

O's, thus: 1100.
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Case 2.—Suppose that we have a function of four

variables. Then (i) there will be 2^ or sixteen rows in the

truth-table, (ii) If we construct the column under the

third variable, we shall have 2^~^ or four sets of 2*~^ or

two I's followed by the same number of O's, thus:

1100110011001100.

Case 3.—Let us suppose a function of five variables.

Then (i) there will be 2^ or thirty-two rows in the truth-

table, (ii) If we wish to construct the column under, say,

the third variable, we shall have 2^"^ or four sets of 2^~^

or four I's followed by the same number of O's, thus:

1 1 1 100001 1 1 100001 1 1 100001 1 1 10000.

It will be obvious that the truth-tables become cumbrous

and unwieldy where the truth-functional expression with

which we are dealing contains more than four or five

propositional variables. Fortunately there are shorter

methods which, as we shall see, can be applied where the

full truth-tables are too clumsy to be used conveniently.

2. Logical Punctuation and the Scope of Constants.

Owing to the comparative simplicity of the expressions

with which we have so far been deaUng and the small

number of variables involved, we have been able to take

for granted certain rules about the grouping and punctua-

tion of logical expressions. These rules must now be made
explicit before we can go on to deal with more complex

expressions. Consider the following propositions

:

(1) It is false that he is ambitious and hard-working.

(2) If he is ambitious, then if he is offered the job, he

will take it.

(3) The Government will fall, or they will get a vote of

confidence and stay in power.
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Suppose that we put these propositions into logical

notation respectively as follows

:

(4) r^p.q.

(5) pOqZ)r.

(6) pyq.r.

These translations into the symbolism of the propositional

calculus are clearly inadequate as they stand because they

are ambiguous. We do not know, without referring back

to our original proposition (1), whether (4) shall be read as

"p is false and q is true" or "it is false that p and q are

true". Moreover, (5) could be read either as "if/?, then if

q then r", or as "if, if p then q, then a-". Again, we do not

know without referring back to the original proposition (2)

which of these two readings is correct. And similarly,

(6) may be read either as "either p or q is true and r is

true" or as "either/? is true or q and r are both true".

When we are using everyday English, such ambiguities

can easily be overcome. But the logical language, which

we have so far at our disposal, is not rich enough to afford

us any means of avoiding them. We must therefore intro-

duce rules which will provide such a means.

Let us define the scope of a logical constant as those

parts of a truth-functional expression which are controlled

by the constant. Thus the proposition "it is false that he

is both ambitious and hardworking" or "he is not both

ambitious and hardworking" [proposition (1) above] is

translated into logical notation as

:

^(p.q)

Here the scope of the negation sign ' '-^' is the whole of the

rest of the function. Contrast this with: "he is not

ambitious but he is hardworking". We translate this as:

(r^p).q.

And here the scope of the constant '--*-' is confined to '/?'
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by the device of confining this part of the expression in

brackets.

Whereas the constant ''~' controls, or operates over,

only the expression (or part of the expression) which

follows it, the other constants which have been introduced

control or operate over the expression (or part of the

expression) both preceding and following. For instance,

in 'p^ q\ the scope of 'V is both '/>' and 'q\ And in

'pW (q.r)' the scope of 'V is both '/?' and '(q.r)\ whereas

in '(py q).r' the scope of 'V is confined to 'p' and 'q\

We shall call these binary constants.

We have therefore to introduce brackets into the

symbolism of the propositional calculus in order to make
explicit the scope of the logical constants which we are

using, in cases where their scope would otherwise be

ambiguous. The following rules for the use of brackets

will suffice for our present purposes.

RP 1.—The scope of '<--'' is confined to the propositional

variable immediately succeeding it, except where ''~' is

followed by a left-hand bracket '('. In this case, the

scope of ''~' will extend to the corresponding right-hand

bracket.

Example 1.—In ''^p.q\ the scope of''--'' is '/?'.

Example 2.—In ''~^(p.{q Z) r)\/ s) \ the scope of ' '~' is

the whole expression.

Example 3.—In 'r-^(p.q)W {r ZDs)', the scope of ''—''

is ' (p. qy.

RP 2.—If a binary constant is flanked by a propositional

variable, the scope of the constant on that side is confined

to the propositional variable. If a binary constant is

flanked by a bracket, the scope of the constant extends to

the correspondifig bracket.
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Example 1.—In 'pD{q^ r)", the scope of the ' D' is

the whole expression, i.e. '/?' and '{q V /-)'.

Example 2.—In the expression

\{pZ>q)-Dr)-D{{rZ)p)^ {s Dp))'

the scope of the first ' D ' is '/?' and '^'; the scope of the

second ' D ' is '
(/? D ^) ' and V ; the scope of the third ' D '

is the whole expression ; and so on.

3. The Construction and Application of Truth-Tables.

Let us take as an example of a simple argument falling

within the scope of the propositional calculus

:

If Jones is innocent, part of the evidence is forged. But

no part of the evidence is forged. Therefore, Jones is not

innocent.

Here we have two premisses and a conclusion, the first

premiss being an implication and the second premiss being

the negation of the consequent of the first premiss. The con-

clusion is then the negation of the antecedent of the

first premiss. The word "therefore" which precedes the

conclusion indicates that the premisses taken together are

asserted to imply the conclusion, or, in other words, that //

the premisses are jointly asserted, then the conclusion

follows. Let us therefore put for the proposition "Jones is

innocent" the propositional variable '/?' and for the

proposition "part of the evidence is forged" the variable

'q\ We can then represent the form of the argument in

the notation of the propositional calculus as follows

:

{(pDq).^q) D^p.
Let us now draw up a truth-table for this compound

expression. Hitherto, in constructing truth-tables, we have

drawn up the truth-values of the variables, in separate

columns, to the left of the truth-table for the function under

consideration, as follows

:
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1 1 1

1

1 1

1

This method is the clearest for elementary exposition.

But it is more concise, and for practical applications more

convenient, to draw up the table as follows:

P ^q

1 1 1

1

1 1

1

so that the truth-table for the whole expression which is

the scope of the logical constant is written directly beneath

the constant in its position between the two variables. We
shall adopt this practice in future.

Let us now construct the table for the truth-functional

expression under consideration

:

First of all, construct the columns of truth-values for the

individual propositional variables from left to right, thus

:

1 2 3 4

iipOq) .
'^ q) O ^ p

1 1 1 1

1 1

I 1

(The numbers above the propositional variables indicate

the order in which the columns are to be completed.)
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Next, construct the truth-tables, from left to right, of

the constants of narrowest scope. (In this case, the first

' D ' and the two negation signs.)

] 5 2 6 3 7 4

iiP^g) ^q)D^p
1 1 1 1 1

1 10 1

1 1 1 10
1 10 10

Next, construct the truth-table for the remaining con-

stants, working from those of narrower scope to those of

wider scope. The final table will read:

152 8 639 74
{(p^q) . ^q)0^p

1 1 I 1 10 1

10 10 10 1

110 1110
10 1 10 1 10

In step number 8, we form the table for the conjunction

of '{pZaqY and ' r^ q\ And finally, in step number 9,

we complete the table by constructing the table for the

constant of widest scope, the ' D ' standing between

' ((/? D ^) .
-^ 9) ' on the left and ' r^ p' on the right. And

to form the column, we apply the rule for the constant

' D ' taking column 8 as the antecedent and column 7 as

the consequent.

It will be observed that the main column of the truth-

table, that is the column beneath the constant of widest

scope, contains only I's. In other words, the expression is

shown to be true for all the possible truth-combinations of

the variables. And this means that the expression is xaJid

or logically true or a tautology. (The terms italicised may
be taken as synonymous.) Thus we have a method for
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testing the validity of arguments which can be expressed

as implications in the notation of the propositional calculus.

We construct the truth-table of such expressions and if the

main column, that is the column beneath the constant of

widest scope, contains only I's, the argument is valid. But

if there is at least one in the main column, then the

argument is invalid.

Suppose that, instead of the argument which we took

as an example above, we take the following

:

If Jones is innocent, then part of the evidence is forged.

But Jones is not innocent. Therefore part of the evidence

is not forged.

Putting this argument into the notation of the proposi-

tional calculus as before, we have

:

{{p-Dq).^p)-D^q.

Now let us construct the truth-table for this expression.

We have

:

{{p D q) . r^p)-D r^q

1 1 1 1 10 1

10 1110
1 1 110 1

10 110 110
Here we see that the column beneath the main constant

does not consist only of I's. It has a in the third row,

thus showing that the expression is not true for all the truth-

possibilities of its variables. Its value is in the case where

p takes the value and q takes the value 1, that is in the

third row.

Where the expression is complicated by the presence of

three or four or even more propositional variables, the

procedure is the same as in the examples taken above.

Consider the following example

:
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((/' D q) . {^ r:D^q)) O [p O r)

1 1 1 1 110 1 1 1 1

1 1 1 10 1 1

1 1110 1 1 1

1 10 110 I

1 1 I 110 1 1 1

I 1 10 1 1

1 1 1110 1 1

1 1 1 I 1 1

Thus we have, in the truth-table, an automatic method

of deciding in the case of any expression in the prepositional

calculus whether or not it is logically true or tautological.

And this means, if the expression is the form of an argument,

that we have a means of deciding whether any argument

which falls within the scope of the propositional calculus

is valid or not.

4. An Indirect Method of Truth-Table Decision. We
have seen that the number of rows necessary in a truth-

table increases in geometrical progression as the number of

variables increases, and that this results in expressions of

five or more variables becoming awkward to manage by

the methods outlined above. There is, however, a shorter

and indirect method of testing validity which rests on the

principles governing the construction of truth-tables. We
have seen that the truth-table of a valid expression contains

in the column under the main constant (that is, under the

constant of widest scope) only the number 1 . Ifnow we make
the hypothesis that such an expression has a in the main

column of its table and examine the consequences of this

hypothesis, we shall find that these consequences are incon-

sistent with the basic rules for the construction of truth-tables.

Let us consider the expression

:
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which was truth-tabled above. Write the expression with

a beneath the constant of widest scope and proceed to

fill in the consequential truth-values in accordance with

the rules.

Step 1. {(p D q) . '^q) ^^p
1

1 1

(The second row of numbers beneath the truth-values

is to enumerate the steps of the procedure, so that it can

be checked on completion.) We put 1 beneath the main

constant of the antecedent and beneath the constant of

the consequent as this assignment of values follows from

the assumption that the whole expression takes the value 0.

Proceeding similarly we have

:

Step 2. ((p D q) . -^ q) H r^ p

Step 3.

Step 4.

Up

1

2

D

11
1 2 1

q) . ~^)D ^p

((P

1

2

D

1 10 1

12 3 13

q) .
'^q)^r^ p

1 1 110 1

4 2 4 12 3 13
In this final step we fill in the values of '/?' and '^'

derived from the preceding steps and find that we have the

expression '(pD^)' taking the value 1, while '/?' takes

the value 1 and '

q
' takes the value 0. And reference to the

truth-table prescribing the truth-functional use of ' D

'

shows that this is not permitted. Thus the assumption

that occurs in the main column of the table has led to a

contradiction of the basic rules of the truth-table procedure.

Hence no can occur in the main column; and therefore

the expression is valid.
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This method may be seen to be similar to the reductio

ad absurdum type of proof used in geometry. The

consequences of a certain assumption lead to an untenable

conclusion. Thus the assumption (in this case, the assump-

tion that the value occurs in the main column) is shown

to be false.

On the other hand, if the assumption that the main

column of the truth-table contains a does not lead to a

violation of the rules, then the main column does contain a

and the expression is invalid. For example

:

{(p ^ q) . r^p)Z3^q

1 1 1 1 1

5 2 6 1 2 3 1 4

Here the combinations of truth-values are in accordance

with the basic rules of the truth-table method. Thus our

assumption that a occurs in the main column leads to no

violation of the rules and the expression is therefore

invalid.

As an example of the indirect method applied to an

expression of several variables, let us consider the following

:

i(p D q)^ r)0 ((/• Z> p) D (5 Z) p))

00 1000100100
47 16 5241323

In this example, the expression '(p'DqY takes the value

while '/j' also takes the value 0. And this is impossible

by the truth-table for the implicative function. Thus the

expression is a valid one. (Notice that there is no need

to determine the value of '^'. The result would be the

same whether '

q
' takes the value or 1 .)

There are occasional cases in which the proof cannot

be completed in a single line. For example, if we cannot

avoid placing 'T under 'V or 'D' or '0' under '
.

' and

have to proceed from that point, we shall need a separate
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line for each of the alternatives. Such cases are not

common and are in any event more concise than a com-

plete truth-table.

5. The Classification of Propositions. Any truth-

functional expression may be truth-tabled and classified

into one of three types in accordance with the character of

its truth-table, or, more properly, in accordance with the

character of its matrix-number. If the matrix-number, i.e.

the sequence of digits in the main column of its truth-table

contains only I's, the expression is valid or logically true or

a tautology. (We may regard these terms as synonymous

in this context.) If the matrix-number contains only O's,

then the expression is logically false or contradictory or

contravalid. But if, as will be the case with most expressions,

the main column contains both I's and O's, the expression

is contingent, its truth or falsity depending upon a particular

combination of truth-values of the variables, and being

true for certain truth-possibihties and false for others.

For example

:

(fl) _ (^ ^ ^)
- (~^ ^^^P)

1 1 1 1 I 1 1

10 1 10 1

1 1 1 1110
10 1 10 110

(b) (/7 D q) . {p . ^q)

1110 10 1

1 1 110
1 I 1

1 10
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(f) (/7 D q) ^ {q V r)

1111111
1111110
10 10 1 1

10 10
111111
111110
10 10 11
10

It will be seen that of the expressions tabled above

{a) is logically true, {b) logically false, and (c) is contingent.

In the case of (c), the truth-value of the expression comes

out as for the single ca^e where '/?', 'q\ and V all take

the value 0.

Two important points follow from this classification

:

(i) Every logically false or contravalid expression is the

negation of a logically true or tautologous expression

and vice versa.

(ii) Every logically true expression is logically equivalent

to every other logically true expression ; and similarly,

every contravalid expression is equivalent to every

other contravalid expression.

6. Reference Formulae. It will be useful to list here for

reference some of the most important of the logically true

expressions.

RF 1: r^(p.^p).—This is the Law of Non-Contradic-

tion* of the traditional logic applied to propositions. It

states that no proposition can be both true and false.

RF 2: (/; V-^/?).—This is the Law of the Excluded

Middle* of the traditional logic applied to propositions.

It states that every proposition must be either true or false.

* See footnote on following page.



REFERENCE FORMULAE 49

RF3: (pZ>p).—This is the Law of Identity* of the

traditional logic applied to propositions. It states that

every proposition implies itself. It will be seen that these

three laws, RF 1-3, can be transformed one into the other

by applying the rules given in Section 4 above for the

translation of one binary constant into ''~' and another

binary constant.

RF4: (p.q)Op.

RF5: {p.q)Z)q.

RF 4 and 5 state that a conjunction implies either of the

propositions conjoined.

RF 6: p Oipy q).—If a proposition is true, then any

disjunction is true of which the proposition is a member.

RF 7; r->^r^p = p.—The effect of doubling the negation

sign is to cancel it. In other words, to deny a negated

proposition is equivalent to affirming the proposition.

RF8: (p.q) ^ (q.p).

RF9: {pMq) ^ {qM p).

RF 8 and 9 are the commutative laws for conjunction

and disjunction respectively. They express the fact that

the order of the functions forming the scope of '
.

' and

'V is immaterial. Notice that the commutative law does

not apply to the constant ' D '.

RFIO: (p.{q.r))=((p.q).r).

RF 11: (py{qW r)) = {(p V ^) V r).

RF 10 and 11 are the associative laws for conjunction

and disjunction respectively. They express the fact that

the grouping of expressions containing only '
.

' as a

constant (or 'V as a constant) is immaterial to the validity

* The attribution of these titles to prepositional formulae is strictly

speaking incorrect. It is, however, not unusual in textbooks of
symbolic logic, and we therefore retain it here.
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of the expression. Notice again that the associative law

does not apply to the constant ' D '.

RF12: (p.(qWr)) ^ {p .q)M {p .r).

RF13: ipy(q.r)) ^ {pM q).{p\ r).

These two laws are the distributive laws for conjunction

and disjunction. The first of these laws has an analogue in

arithmetic and algebra, if we read ' X ' for '
.

' and ' +' for

'V. It is always true if a, b, and c are real numbers that

{a X {b -{- c)) equals {a X b) + {a X c). But there is no

similar analogue in arithmetic for RF 13.

RF14: (p.q) = ^{^pyr^q).

RF15: {pMq) = ^{^p. ^ q).

RF 14 and 15 are known as de Morgan's rides after the

English mathematician and logician, Augustus de Morgan.

Although he was not the first logician to discover these

rules, which were known in the middle ages, he v/as the

first to draw attention to their importance. It will be seen

from an examination of the rules, as expressed above, that

there is an important relation between conjunction and

disjunction. Any expression in which a disjunction occurs

may be expressed as a conjunction, if we negate bodi

components of the disjunction and also the disjimction

itself. And similarly, any conjunction may always be

expressed as a disjunction, if we negate both components

of the conjunction and the conjunction itself. This

important relation is known as the duality of conjunction

and disjunction. It is very useful in logical manipulations.

RF 16: (p "Dq) = (~ (/ D ^;?).—This is the Law of

Contraposition. It states that, in any implication, we may

interchange antecedent and consequent, provided that we

negate them both.

RF 17: (p'Dq) "^ ('^ py q).—This is the definition of

material implication which we have met already.
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RF 18: {p "D q) = ^{p- '^ ^).—This can be transformed

into RF 17 by applying RF 7 and 14 to the right-hand side

of the equivalence. It is another definition of material

implication.

RF 19: {{p Dq).{q^ r)) li(pZ) /").—This is the law of the

transitivity of implication. It states that if one expression

implies a second and the second implies a third, then the

first implies the third.

RF 20: ((p D q) .p) D q.—This is known as the rule of

detachment or the ponendo ponefis rule. It states that if

the antecedent of an implication is affirmed together with

the implication, then the consequent of the implication

follows.

7. Decision Procedures and Normal Forms. One of the

most important problems in logic is that of finding a method

which will enable us to say of any given expression whether

or not it is a tautology. The method of truth-tables which

was explained above is one such method which is available

to us in the calculus of propositions. These methods are

called ''decision procedures", because they enable us to

decide whether or not an expression is a tautology.

We have seen that the method of truth-tables sometimes

becomes unwieldy when there are a large number of

propositional variables in the expression whose logical

truth is under consideration. There is, however, another

decision procedure which is sometimes more convenient

to apply than the truth-table method. This is known as

the method of reduction to normal or canonicalform.

It was seen above that any of the logical constants of the

propositional calculus can be expressed in terms of the

other constants. For example, an expression containing

the constants '
.

' and ' D ' can be translated into an

equivalent expression containing only '.^' and 'V as

constants. Thus

:
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((P0q).(q0r))0{p0r)

is equivalent to

:

r^^ (r^ (^^ p y q) v~(~9V/-)) V(~/) V/-),

by the application of RF 14 and 17 above.

By the use of equivalent expressions in this way, it is

possible to transform any expression into an expression

consisting of a conjunction of disjunctions of the form:

((. . .(p M q) V ^q) y r)y s)y. . .) V/.

That is to say (1) the disjunction consists only of proposi-

tional variables and their negations and these in a standard

order (e.g. alphabetical), provided that if both a propo-

sitional variable and its negation occur, the negated

instance immediately succeeds the unnegated instance.

(2) The disjunction is bracketed in a standard way, i.e.

from left to right, a bracket following every propositional

variable except the first and last. The conjunction built

up from these disjunctions also exhibits a standard ordering

and bracketing. It is called a conjunctive normal form.

We prove first:

Theorem 1 : A conjunction of disjunctions not in

standard ordering or bracketing can be converted to an

equivalent conjunctive normal form (CNF for short).

This can always be accomplished by successive applications

of RF8, 9, 10, 11.

We may convert a formula into an equivalent CNF by

proceeding as follows. First we strike out all double

negations, according to RF 7. (This process is repeated

when necessary after each of the further operations.)

Next we replace all occurrences of 'PD g' by '-^P V Q'

according to RF 17. Then we get rid of forms like

'~(PV 0', '--(F.0' replacing them with '^P.^ Q\
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'^pv-^g' respectively, according to RF 14, 15, and
7.*

We proceed in this manner until no bracket is preceded

by a negation sign. We then transform the resulting

formula into a conjunction of disjunctions by repeated

applications of RF 12 and 13 and obtain the CNF by

RF 8, 9, 10, and 11. This process can always be carried

out until a CNF is reached and so we have:

Theorem 2 : Every formula can be reduced to an equiva-

lent CNF by applications of RF 7 to 17.

From this we have immediately:

Theorem 3: Every tautology can be reduced to a

tautological CNF by applications of RF 7 to 17.

That the CNF is equivalent to the original formula is,

of course, a consequence of the fact that RF 7 to 17 are

themselves tautologies.

We now have to consider the conditions under which a

CNF is a tautology. Plainly a conjunction is a tautology

if and only if its elements are tautologies. Hence we have:

Theorem 4: A CNF is a tautology if and only if each of

its component disjuncts is a tautology.

Furthermore, we have

:

Theorem 5: A disjunction whose components are

propositional variables is a tautology if and only if at least

one propositional variable and its negation occurs in the

disjunction.

If such a disjunction is in standard ordering, the appro-

priate propositional variable will, of course, immediately

precede its negation.

* Here we must understand the italic capital letters P, Q, to stand
for any propositional variable, negated or unnegated, or any truth-
functional expression compounded from such variables. (See p. 69.)
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The process of reduction to CNF is illustrated in the

following examples:

{a) i{pOq).^q)0^p.

--((~/7 V^).~^) V~/7. By RF 17.

(^{^pyq)w^^q)y^p. By RF 7 and 14.

((P-~^) V^) V~/7. By RF 7 and 15.

((qyp).(gy^q))y^p. By RF 9 and 13.

((p y -^ p) y q) .{(^ p y q) y ^ q). By RF 9 and 13.

(b) ((pOq).{qT)r))Z> (pZ:>r).

First transform the expression by RF 17 into:

r^((^p\/q).(^qW ,)) V(~/? V/-).

Applying the de Morgan rule (and dropping double

negations by RF 7), we have:

(^{^pyq)y^{^qW /•)) V (^p y r).

And a second application of the rule gives:

((p.'-^q)y(q.^r))y(^pyr).

Applying the distributive laws to the first two members

of the disjunction, we get:

((pyq).(py'^r).iqy-q).{-qy^r))y(^pyr).

Finally, by the commutative law (RF 9), we can bring

the second term of the disjunction to the front of the

expression and then apply RF 1 3 to get

:

(p y r^p y q y r) .(p y '^ p y r y '^ r)

.

(/^ p y q y '^ q y r) .(^ p y ^ q y r y ^ r).

The expression is now in conjunctive normal form.
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(c) ((p^g).^ p)D^g.

First we apply RF 17 to transform the constants of

implication into negation and disjunction signs:

Then we apply the de Morgan rule to transform the

conjunction sign in the same way:

/^ ,^ (r^ (^r-^ pWq)W^^r^p)V'-^q.

We next drop the double negation by RF 7 and use the

associative law (RF 1 1) to group the expression as

:

~ (~ /7 V f/) V (p V ~ ^)

and then apply RF 7 and the de Morgan rule to arrive at

:

(p.^q)y(py'^q).

Finally, we switch the order of the elements of the main

disjunction by the commutative law and use the distributive

law (RF 13) to obtain:

(pypM^q).(p\/^qy^q).

The expression is now in conjunctive normal form.

If we examine the conjunctive normal forms arrived at

in these manipulations, it will be seen that in examples

(a) and (b) each member of the conjunction, in both cases,

contains a propositional variable and its negation joined by

'V. For instance, the first conjunct of {a) in normal form

contains '/?'and ''->-'/7' joined by 'V and the second conjunct

contains '^' and ' '^ q' similarly joined. Now this dis-

junction of a propositional variable and its negation is a

tautology. (See RF 2 above.) Moreover, such an expres-

sion remains logically true, if we add to it by disjunction

any number of propositional variables, whatever their

truth-values. In other words, since '(/jV-^p)' is a

tautology, so is '(/?V r^pN q)"" and '{pN ^pM qy r\/ . . .)'.

It is obvious, to take a concrete example, that since "either

it is raining or it is not raining" is logically true, so is
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"either it is rainiiip or it is not raining or twice two are

five."

Thus each element of the conjunction is logically true

and therefore the whole expression in these two cases is

logically true. But in the case of (c), this condition does

not hold. Thus (c) is not logically true.

We can sum the matter up as follows:

(1) 'P V ~P' is logically true.

(2) If 'P' is logically true, then 'P V g' is logically true.

(3) If both 'P' and 'Q' are logically true, then 'P. Q' is

logically true.

(Here we must understand the capital letters 'P', ''Q\Xo

stand for any propositional variable, negated or unnegated,

or any truth-functional expression compounded from

propositional variables.)

8. The Total Number of Truth-Functional Expressions.

It has been seen that, when we evaluate a truth-functional

expression by constructing its truth-table, we determine

its characteristic matrix-number. Thus the matrix-number

of > v^' is 1110 and that of >.(^ Vr)' is 11100000. We
have seen also that any two or more expressions which are

logically equivalent have the same matrix-number and, in

particular, all tautologies have the number 1111 for func-

tions of two variables, 11111111 for functions of three

variables, and so on. Suppose now that we ask the question

"how many non-equivalent truth-functions are there in the

propositional calculus?"

Obviously, the answer to this question will depend on

the number of propositional variables which we admit into

the calculus, but for any stated number of variables, the

answer is easy to give. For the number of non-equivalent
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truth-functional expressions will be the number of different

matrix-numbers. Thus, if we are concerned only with one

prepositional variable, there will be four possible matrix-

numbers: 11, 10, 01, 00. And these are the respective

numbers of the expressions

:

py^p; p; ^p; p.^p.

For truth-functional expressions of two variables '/?' and
'^' we need, as has been seen, a matrix-number consisting

of four digits. The number of non-equivalent expressions

constructed from '/?' and '^' will therefore be the possible

way of filling four places with either or both of the digits

1 and 0. Clearly, this will be 2* or sixteen ways, since

there are two ways of filling the first place, two ways of

filling the second place, each of which has to be combined

with the two ways of filHng the first place, and so on.

Proceeding in the same way, we see that for three

variables '/?', '^', and V there will be 2^ or 256 possible

non-equivalent expressions, and that for four variables

there will be 2^^ or 65,536. To see what the general formula

for n variables will be, we notice that the powers of 2 in

2^, 2^ 2^, 2^^ used above are themselves the successive

powers of 2, viz. 2\ 2'^ 2^, and so on. Thus, the number of

non-equivalent truth-functional expressions in the pro-

positional calculus can be represented as follows:

There are 2^ or 2^ or 4 non-equivalent functions of one

variable.

There are 2^ or 2* or 16 non-equivalent functions of two

variables.

There are 2^ or 2^ or 256 non-equivalent functions of

three variables.

And, in general, there will be 2^ non-equivalent functions

of n variables.
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9. Derivation by Substitution. The method of truth-

tables and of normal forms are decision procedures which

can be applied to a given formula as a touchstone of validity.

They tell us, with respect to any formula, whether or not

it is a tautology. There is, however, another method by

which we may show that a given conclusion follows from

its premisses and so that a given formula of the form:

(1) (P,.P,.P,....Pn)^Q

is valid. This is the method oi deriving the conclusion from

the premisses by making use of formulae already established

as valid. (Some of the most important of these formulae

have been listed in Section 6 as "reference formulae".

They are sometimes, rather misleadingly, called "logical

laws".) The method of derivation by substitution, to be

explained below, is not a decision procedure. For it will

not enable us to say of any given formula whether or not it is

valid. But it will enable us to show that a certain formula

is derivable from a set of premisses if, in fact, it is so

derivable. It therefore provides a useful method of testing

the vahdity of arguments.

In order to make use of this method we have to assume

that if one formula can be obtained from another by

interchanging with it formulae known to be equivalent,

then the original formula is equivalent to that obtained by

the interchange. For example:

(2) p.(qyr)

is known to be equivalent, by RF 12, to:

{3)(p.g)np.r).

We may therefore write (3) wherever we find (2) and vice

versa. This assumption will be justified later; but for the

present, we shall assume it without proof. Thus if we have

an expression of the form:
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(4) (PD0 ^^{Rys)

and we know from our reference formulae that, for

example, 'Q ^ T' and 'R = ^ U\ then we may write

(4) as:

(5) (PDT) = (^Uy S).

We shall assume further, in virtue of RF 19 and RF 20,

that:

(i) If we have conditional expressions of the form

'PDQ' and 'QD/?', then we may assume the further

conditional 'PO R\

(ii) If we have given a conditional 'P D g' and the

antecedent 'P' is also given, then we may assume the

consequent ' Q\ These assumptions can also be justified

but they are sufficiently obvious to assume here without

proof.

Let us now consider the following examples:

(6) If A leaves the country, then it is false that he is

both innocent and secure from arrest. If he submits to an

audit of his books, then he is innocent. If he is innocent,

then he is secure from arrest. He will submit to an audit

of his books. Therefore: A will not leave the country.

Let us symbolise the propositions involved in this argu-

ment thus:

A = A will leave the country.

/ = A is innocent.

5" = A is secure from arrest.

5 = A will submit to an audit of his books.

We may now represent the four premisses and the con-

clusion thus:

(i) y4 D ~ (/. S).

(ii) BDL



(V) {I.S)D

(vi) I

(vii) S

(viii) r^A
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(iii) I OS.

(iv) B.

Therefore: '^ A.

We may derive the conclusion by substitution as follows:

A (from (i), using RF 7 and 16).

(from (ii) and (iv) using RF 20).

(from (iii) and (vi) using RF 20).

(from (vi), (vii), and (v) using RF 20).

(7) If the price of gold shares falls or boring operations

fail, then either Jones will go bankrupt or he will commit

suicide. If the boring operations fail or Jones goes

bankrupt, then there will be a prosecution. There will

not be a prosecution. The price of gold shares will fall.

Therefore: Jones will commit suicide.

As before, we may symbolise our constituent propositions

thus:

G — The price of gold shares will fall.

F = Boring operations will fail.

J = Jones will go bankrupt.

5" = Jones will commit suicide.

P = There will be a prosecution.

The argument can then be set out thus:

(i) (G V F) D (y V S).

(ii) (Fvy)D/>.

(iii) ~p.
(iv) G.

Therefore: S.

(V) ~ P D ~ (F V y) (from (ii) by RF 1 6).

(vi) r^{Fy J) (from (v) and (iii) by

RF 20).
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(vii) ^F.^J (from (vi) by RF 14).

(viii) -- (G V F) V (7 V 5) (from (i) by RF 17).

(ix) (r^ G .
r^F) y (J y S) (from (viii) by RF

14).

(x) (jysy^G).{jysy^F) (from(ix)byRF13).

(xi) (jy^GMS) (from (x) by RF 4

and RF 9).

(xii) ^(jy r^G)D s (from(xi)byRF17).

(xiii) (~/.C)D5 (from (xii) by RF
14).

(xiv) s (from (vii), (iv), and

(xiii) by RF 20).

(8) If it is false that A's flight implies A's guilt, then if

the evidence was properly recorded, the police were not

impartial. Therefore: If A has fled and the evidence was

properly recorded, then if the police were impartial, A
is guilty.

We may represent the argument as follows:

(i) --(FDG)D(£D ~/).

Therefore: (F.£)D(/DG).

(ii) (FDG)V(£D ~/) (from (i) by RF 17).

(iii) (^FyG)y(^Ey^i) (from (ii) by RF 17).

(iv) (^i^V~£V~/VG) (from (iii) by RF 9

andRFll).

(v) ^(F.E)y('^iyG) (from (iv) RF 14).

(vi) (F.£)D(/DG) (from (v) by RF 17).

(9) If this substance is put into hydrochloric acid, then

if it dissolves, it is either salt A or salt B. If it is salt A,

it contains sodium. If it is salt B, it burns with a red

flame. It is put into hydrochloric acid and does dissolve.
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It does not burn with a red flame. Therefore, it contains

sodium.

We have:

(i) HO{DD{A MB).

(ii) ADS.
(iii) BOR.
(iv) H.D.

(V) r^R.

TU^.~,

(vi) DD{A\I B)

1 lien

(vii) AM B

(viii) ^ RD^B
(ix) ^B
(x) By A

(xi) r^BDA
(xii) A

(xiii) S

(from (i) and (iv) by RF 20).

(from (iv) and (vi) by RF 20).

(from (iii) by RF 16).

(from (v) and (viii) by RF 20).

(from (vii) by RF 9).

(from(x) by RF 17).

(from (ix) and (xi) by RF 20).

(from (ii) and (xii) by RF 20).

Arguments (6) to (9) above are valid and their validity

was shown by use of the reference formulae. It is not

possible, however, to show conclusively in this way that a

given argument is invalid. We shall certainly fail, if the

argument is invalid, to make substitutions which lead to

the required conclusion. Nevertheless, we cannot always

be sure, if the argument is complex, that our failure to

arrive at our goal is not due merely to our inability to see

what substitutions we ought to make. But in simple cases

of invalid arguments, it becomes obvious after a few steps

that the conclusion cannot be reached. For example:

(10) If A is elected, B will resign. If C is elected, B will

not resign. If A is elected, C will not be elected.

Therefore: B will resign.
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We have:

(i) A^B.
(ii) CO^B.
(iii) A^^C.

;

Therefore : B.

It becomes obvious, as soon as the argument is formaHsed,

that we shall never be able to prove the conclusion B from

the given premisses. Nevertheless, self-evidence is never

a wholly reliable guide as a test of logical validity and it is

always desirable to check the findings of intuition by some

more objective test. If therefore we suspect that an

argument which we are testing by this means is invalid,

we can always fall back upon a decision procedure to give

us an unequivocal answer,

BIBLIOGRAPHICAL NOTE

Chapters II and III

Good treatments of the truth-table method of decision are

given in Ambrose and Lazerowitz (1), Cooley (7), and Reichen-
bach (25). The classical exposition of the prepositional calculus

is in Hilbert and Ackermann (12), but the student should be
warned that the manner of presentation is very condensed and
demands careful study.
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THE AXIOMATIC METHOD

1. The Purpose of the Axiomatic Method. The decision

procedures which we have discussed so far enable us to

distinguish the truth-functional expressions which are

tautologies or logical laws from those which are not. But

they do not give us any means of constructiiig tautologies.

For that we need a procedure of quite a different kind.

We have such a procedure in the axiomatic method which

is familiar to most people, in a rather imperfect form, in

the geometry of Euclid. In using this method, we choose

a number of propositions known as axioms (or postulates)

as our starting point, and with the help of certain definitions

deduce other propositions (known as theorems) from the

axioms. The use of the axiomatic method in logic is

similar but we need to be more careful and specific about

our starting point than we need be in Euclidean geometry.

For Euclidean geometry assumes without mentioning the

ordinary procedures of logical inference. And we may not,

of course, do this in constructing an axiomatic basis for a

part of logic itself.

Before we go on to lay down the basis of the axiomatic

system and use it in making deductions, it would be well to

recapitulate a little in order to make clear the purpose of the

axiomatic method. We have seen that the truth-functional

expressions of the propositional calculus are built up from

three different kinds of basic material, (i) propositional

variables, (ii) logical constants, and (iii) brackets which

express the scope of the logical constants. It is, however,

not permitted to put this material together in any order we

please. Certain combinations of this material make up

64
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truth-functional expressions; certain others do not. For

example: ' (p 'D q) = ('^ q "D '^ p)' and '{p^q)'Dr'' are

both permitted expressions. But '"D i^qp' ot 'p r^ — ^^ '

are not. We have so far taken this distinction as intuitively

obvious but we now need to make it explicit. We shall do

so by distinguishing all the possible combinations of the

basic material into two classes, (i) meaningful or permitted

expressions, called '' well-formed formulae''' ;
(ii) meaning-

less or illegitimate combinations such as '/? =.V^V'.

There is a corresponding distinction in ordinary language

between sentences constructed according to the rules of

grammar and syntax and random combinations of words

like "is over very cats between" which would ordinarily

be said to be meaningless. The precise distinction between

meaningful and meaningless sentences in ordinary language

is not an easy one to draw, though the extremes of meaning-

lessness are obvious enough. But in logic it is fortunately

possible to make the corresponding distinction quite

precise by definite rules.

Of these two types of expression, we are, of course,

interested only in well-formed formulae. But these also

fall into two main classes, those which are tautologies or

logically true (distinguished in their truth-tables by having

only I's in the main column) and those which are not

logically true but are either contradictory or contingent.

Again we are interested primarily in the first of these two

classes. We use the axiomatic method in order to construct,

on the foundation of certain basic material, expressions

all of which are tautologies. These we can again subdivide

into those which we take as the starting point of our axiom

system and those which we leave to he proved in the system.

The members of the first set we call axioms (or postulates)

and the members of the second set we call derivableformulae

or theorems.
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We can represent the relations between these various

types of expressions as follows

:

Combinations of basic symbols

well-formed formulas illegitimate expressions

invalid formulas valid formulas

axioms derivable formulas (or theorems)

The basic material which we need in order to build up

an axiom system is as follows

:

(i) Rules of syntax.

(ii) Definitions.

(iii) Axioms.

Let us consider each of these in turn.

2. The Construction of an Axiom System. Rules of

Syntax.—The word "syntax" is used in logic as a technical

term but its technical meaning is analogous to that which

it bears in ordinary language. The original meaning of

"syntax", according to the Oxford English Dictionary,

was "the orderly or systematic arrangement of parts or

elements". In time, the use of the word became specialised

and its usually accepted meaning is given, by the same

dictionary, as "the arrangement of words, in their appro-

priate forms, by which their connection and relation in a

sentence are shown". In logic, the phrase "logical syntax"

(or, for short, "syntax") refers to the rules which govern

the relations between the symbols of logic. There are two

main classes of such rules. Those which govern the con-

struction of well-formed formulae (which for short, we shall
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call WFF's) are known as formation rules. But we also

need rules which determine when a proposition can be

said to be a consequence of or follow from one or more

propositions. These are known as transformation rules.

Let us now consider these rules in detail:

Formation Rules.—RSF 1: (A rule determining the

primitive categories or concepts of the propositional

calculus.) There are three such categories.

(i) The symbols p, q, r . . . (or, alternatively, p^, P2, Pz,

. . . />„) stand for propositional variables, that is, represent

indifferently any proposition whatever.

(ii) Logical constants consisting of an initial constant
'~' and the binary constants '

.

', 'V, ' D ', and ' =
'.

(iii) The concept of the scope of constants expressed by

brackets '(. . .)'.

RSF 2: (This rule governs the formation of WFF's.)

(i) A propositional variable is a WFF.

(ii) If 'P' is a WFF, then ' -- P' is a WFF.
(iii) Any two WFF's joined by a binary constant is a

WFF.

(Thus, if 'P' and 'Q' are both WFF's, then 'P.O\
'PM Q\'P^Q\ and 'P = 2' are all WFF's.)

RSF 3: (This rule determines how the expressions of

the propositional calculus are to be punctuated in order

to be unambiguous and thus how the scope of constants

is to be understood.)

(i) The relative strength of the binary constants, from
strongest to weakest, shall be as follows

:

•VD =
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For example, the expressions

:

(A) p.q^rMs,

(B) p.qMr = s,

(C) p^q.ry ^s,

shall be read, in the absence of brackets, as if bracketed

thus

:

(A') (p../)D(/-V.v),

(B') ({p.q)yr) =s,

(C) p^((q.r)M^s).

(ii) Where brackets are used to indicate the scope of

constants (either to avoid ambiguity or to facilitate under-

standing) the following rules shall apply

:

(a) If '--'' is immediately followed by a propositional

variable the scope of '--«-'' is confined to that variable.

If it is followed by a left-hand bracket '('» the scope of

''~' extends to the corresponding right-hand bracket.

(For examples, see Chapter III, Section 2, above.)

(h) If a binary constant is flanked by a propositional

variable, the scope of the constant on that flank is confined

to the variable. If a binary constant is flanked by a bracket,

the scope of the constant extends to the corresponding

bracket. (For examples see above.)

(c) The definition of a corresponding bracket to a left-

hand bracket is the (n + l)th right-hand bracket succeeding

if n left-hand brackets intervene. Analogously, the corre-

sponding bracket to a right-hand bracket is the (fi -\- l)th

left-hand bracket preceding if n right-hand brackets

intervene.

For example, consider the expression

:

{{(p Z:>q)0(p^ /•)) D (^ D /•)) V (5 V /).

Here the corresponding bracket to the first left-hand

bracket is the ////// right-hand bracket; the corresponding
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bracket to the third right-hand bracket is the second

bracket; and so on.

Metalogical Symbols.—The capital letters 'P\ ' Q\
'R\ ... shall be used as metalogical symbols. These

may be regarded as second-order variables whose values

are WFF's formed according to RSF 2 above. These

symbols are accordingly used to represent propositions

whose logical form is left indeterminate. (An example

of their use occurs in Chapter III, Section 7, above.) Thus

'PVg' can stand indifferently for any WFF whose con-

stant of widest scope is a disjunction. Similarly, ' '-^P' can

stand for any negated expression whatsoever. Symbols of

this type are required in order to express the transformation

rules of the system in a general form. They are not used

in the axiomatic system but are required to talk about the

system. They are therefore said to belong to the meta-

language of propositional logic.

Transformation Rules.—RST 1: Rule of Uniform Sub-

stitution.—Any WFF may be substituted for any proposi-

tional variable throughout an expression. Thus, for:

we may write:

{{{pMq)Z:>q).^q)Zi^{pMq),

substituting '(p^q)' for 'p' throughout. We express the

fact that this substitution has been made by writing

'(p V q)/p' beside the new formula.*

RST 2: Rule of Substitution by Definition.—In any

valid formula (that is, in any axiom or theorem), we may

* The stroke here is, of course, not the constant of the stroke
function (which has not been introduced into this axiomatic system)
but merely represents the operation of substituting in accordance
with RST 1.
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substitute for any part of the foraiula any expression which

is equivalent to it by definitions Def. 1 to Def. 3 below.

Thus, for : ((/? D g) . (^ D /•)) 'Dip'Dr)

we may write : '-^{{p'Dq).{q'D r)) V ( p D r),

in accordance with Def. 2. Similarly, we may write the

same expression in accordance with this rule but using

Def. 1, as: ~ ('^ (/? D ^) V -- (^ D /)) -DipZi /).

Notice that substitution in accordance with RST 2 need

not be made throughout theformula, as in the case of RST 1

.

RST 3: Rule of Detachment.—U P^Q' and 'P' are

both valid formulae, then ' Q' is a valid formula.

RST 4: Rule of Adjunction.—If ^
P" is a valid formula

and ' O' is a valid formula then 'P. ^' is a valid formula.

[Note.—This rule is stated here for convenience only.

It is not strictly necessary to state it separately and it is

proved below. (See page 90 and the discussion of indepen-

dence in Section 6.)]

The syntactical rules given above are sufficient to enable

us to set out the axiomatic system but it is possible, and

also useful, to prove further rules of syntax as they are

required.

Definitions.

Def. 1. P.e=.,,~(^PV^0.
Def. 2. PDg ^af^P^ Q-

Def. 3. P= e=./(PD0.(eDn

Axioms.—We may choose the axioms of our s} stem in a

very large number of different ways but whatever choice

we make there are certain conditions to which our selection

must conform. In the first place, our axioms and rules

must be consistent. This means that only tautologies

should be derivable. A necessary (but not a sufficient)
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condition for this is that if any formula is derivable, its

negation must not be derivable. A more detailed discussion

of this point, together with a proof of the consistency of

our axioms, will be given later.

There is a second property which it is necessary that a

set of axioms should possess if it is to form a satisfactory

basis for a system of logic. It must provide an adequate

basis for proving all the tautologies of the logic in question.

In technical terms, the set of axioms must be complete.

And a thijd property of our axiom set which, though not

strictly necessary, is nevertheless very desirable is that the

axioms should be independent; in other words, no one of

the axioms can be proved as a theorem from the others

and, therefore, no one of the axioms is redundant.

We shall later have to discuss these requirements in more

detail and to prove that the axioms which we select do, in

fact, possess these properties under the rules given. The

following axioms are four of the five which were used by

Whitehead and Russell in the system of propositional logic

set out in Principia Mathematica. (The fifth of their

axioms was subsequently proved not to be independent

of the other four.)

A 1. {p^p)-Dp.

A 2. qO(pyq).

A 3. (pyq)Z)(qMp).

A 4. (qOr)D{(pyq)^(py/r))

When we meet these axioms for the first time, their most

noticeable feature is their triviality. This feature is brought

out very clearly if we interpret them by replacing the pro-

positional variables by particular propositions. For

example, the first axiom, so interpreted might read

:

"If it is raining or it is raining, then it is raining".
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And A 2 might be interpreted as:

"If it is snowing, then either it is raining or it is

snowing".

The reader may well be tempted to wonder how such

empty and pointless statements could possibly be of any

value as the foundation of a system of logic. The answer

is that though the content of these axioms is trivial and

empty, their co?isequences, that is to say the theorems

which can be deduced from them in accordance with the

rules of syntax, are by no means always so trivial. After

all, if the system of axioms is complete, then it will be a

basis for proving all the tautologies of the system whether

obvious or surprising. We shall prove later that this

system is complete.

3. Derivable Formulae. For the sake of brevity, we shall

refer to the set of axioms, rules, and definitions of the

previous section as the Axiom System, or for short, AX.

We must first explain precisely what is meant by saying that

a particular formula is a derivable formula of AX or prov-

able in AX.

Suppose we have a formula F, and suppose we are able

to form a chain of formulae /'j, P.,. • • -Pn, F which satisfies

the following condition

:

Every formula in Py, Po, . . . P,,, F is either an axiom of

AX or else it is got from some previous members of the

chain by a single application of one of the rules RST 1-3.

Such a chain of formulae, if it exists, is called a derivation

or proof of '/^' in AX. The reader will easily see that our

condition is simply a precise and explicit statement of what

we intuitively understand to be a proof in AX. A formula

'F' then is said to be derivable or provable in AX if there

exists a proof of it. Needless to say, there may be many

diflFerent proofs of the same formula.
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Example 1.
—

'(/' D •-77) D -- /^ is a derivable fctnnula

of AX.

Proof.—We form a chain of formulae, starting with

Axiom 1.

(1) ipyp)^p.

We now substitute ' ^-^ p' for '/^' in H) according to RST 1,

(2) {^p\/r^p)^r^p.

We then put '/; D '^ p' for ' r^ p \j r^ p' in (2) according

to Def. 2 and RST 2,

(3) (/7D~/7)D~/?.

The chain of formulae (1) to (3) then forms a proof of

(3) in AX.

We can set out the working formally as follows:

(1) {pyp)i:>p Al.

(2) (~pV~p)D^;7 (1), RSTl,(-/;/p).

(3) {p0^p)-J)^p (2), RST 2, Def. 2.

Example 2.

—

\q D /•) D ((/> Dq)'D(pD /))' is a derivable

formula.

(1) (^D/-)=>((/'V^)D (pyr)) A4.

(2) (9D/-)D((-/7V^)D(~;;Vr)) (1), RSTl,-/)/;;.

(3) (qZ>r)0 {{p ^q)Z>(p-D /)) (2), RST 2, Def. 2.

Example 3.

—

' r^ p V/?' is derivable.

Proof.—
(1) (^ D A-) D i(p -D q)Z:> {p::i r)) Example 2.

(2) {{p yp)Op)D ({p ^ (py p)) (1), RST 1 , ( /) V p)lq,

^ (pD p)) Plr.

(3){pyp)lip Al.
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(4) {(P^ipy P)) 0(p-D p)) (2), (3), RST 3.

(5) pD(pyp) A2, RST I, Pig.

(6) pop (4), (5), RST 3.

(7) r^pWp (6), RST 2, Def. 2.

In what follows, we need to consider, in addition to

derivable formulae of ^Z, theorems about AX. Theorems

about AX are not themselves derivable formulae; they

are rather true statements to the effect that certain formulae

are derivable (or are not derivable) and the hke. It is

clear that derivation in AX may establish the derivability

of a formula in AX, but no amount of such derivation will

establish that any formula is not derivable, or that an

infinite number of formulae of a certain kind are derivable.

In order to establish theorems of this kind we have to

transcend AX, as it were, and view it as the object of

investigation.

For this reason we shall not undertake the derivation of

random formulae, since this is a matter of Httle interest

by itself. Instead, our eflforts will be directed to proving

certain facts about AX, namely, its consistency, the inde-

pendence of its axioms and the completeness of the system.

The first two objects may be attained without deriving any

new formulae. We shall therefore deal with these first.

The question of completeness is more complicated and to

answer it, we shall need to investigate the structure of AX
in some detail.

4. Conditions for an Axiom System. It has already been

stated that we may select the axioms which form the starting

point of our system in very many different ways. Neverthe-

less, our selection may not be quite arbitrary. There are

certain considerations, partly of convenience and partly

of necessity, which restrict our range of choice. For

example, it is inelegant and sometimes awkward to use a
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'' needlessly large set of axioms. And our proofs may
become unnecessarily complicated and difficult if we

restrict ourselves to too small a number. Moreover, it is

usually desirable to choose those axioms which will render

the proofs of important theorems simple and straight-

forward. ;

But apart from these optional requirements of elegance

and simplicity, there are more important demands which

any set of axioms must satisfy. These are the conditions

of consistency and completeness which must now be defined

with more precision. All our definitions will take as given

the formation and transformation rules, so that when we

speak of the consistency or completeness of an axiom set,

we shall mean consistency or completeness under these

rules. In general, an axiom set may be consistent or

complete under one set of transformation rules and incon-

sistent or incomplete under another set of such rules. For

example, although our axioms are both consistent and

complete under rules RST 1-4, if we added another rule,

say,

RST 5.—If any formula '/*' is derivable, so is '^-'f

then the axioms would be inconsistent under this extended

set of rules. Likewise, if we delete, say RST 3, the axioms

would be incomplete under RST 1, 2, and 4 alone. Deletion

of RST 4, on the other hand, would not affect either con-

sistency or completeness and it is included only for the sake

of convenience.

Three distinct definitions of consistency may be given for

an axiom set, assuming RST 1-4. These are:

(1) An axiom set is consistent if every derivable formula

is a tautology.

(2) An axiom set is consistent if, for every formula ' P\
"F\ and '^^ P' are not both derivable.
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(3) An axiom set is consistent if there are formulae which

are not derivable.

It is easy to see that any axiom set which is consistent in

sense (1) must also be consistent in senses (2) and (3). This

follows from the facts that not every formula is a tautology

and that if 'P' is a tautology, '--^ f is not a tautology, and

conversely. It is therefore independent of our choice of

transformation rules. We shall in fact prove that our

axiom set is consistent in sense (1), given the rules RST 1-4.

An axiom set is said to be complete if the addition of any

further formula (not already derivable) to the axioms results

in inconsistency. That is to say, the set is complete if it

cannot be extended without running into inconsistency.

Since completeness is defined in this manner in terms of

inconsistency, it is plain that there will be three distinct

notions of completeness corresponding to the three notions

of consistency set out above. Thus:

(1) An axiom set is complete if every extension of it

results in the derivability of some formulae which are not

tautologies.

(2) An axiom set is complete if every extension of it

results in the derivability of both 'P' and " '^ P\ for some

formula '/*'.

(3) An axiom set is complete if every extension of it

results in the derivability of all formulae.

It is again easy to see that any axiom set which is complete

in sense (3) is also complete in senses (1) and (2).

Our next task is to investigate the relations between the

three kinds of consistency and completeness for our axiom

system AX. We shall ultimately prove that, so far as ^A'

is concerned, the three notions of consistency are equivalent.

That is to say, if AX is consistent in any one of the senses

of "consistent", it must also be consistent in the other two

senses. Likewise, if AX is complete, in any one of the
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senses of "complete", then it must also be complete in the

other two senses. We prove these equivalences for AX
only. There are, of course, other systems for which they

do not hold.

We have already:

Theorem 1: If AX is consistent in sense (I), it is also

consistent in senses (2) and (3).

Theorem 2: If AX is complete in sense (3), it is also

complete in senses (1) and (2).

It is also obvious that:

Theorem 3: If AX is consistent in sense (2), it is also

consistent in sense (3).

We now prove:

Theorem 4: U AX is consistent in sense (3), it is also

consistent in sense (2).

In other words, if there are formulae not derivable in

AX, then for any formula "P\ not both '/*' and ' ^^f are

derivable in AX. We proceed by proving that if for any

formula "P', both '/" and '^^P' are derivable, then every

formula is derivable. A formal derivation is as follows:

(1) P (given as derivable).

P) A2, RST 1, - Pq.

(2), (3), RST 3.

^PWp) A3, RST I, r^PJq.

(4), (5), RST 3.

(6), RST2, Def2.

(1), (7), RST 3.

(8), RST 1, Q/p,

where ' O ' is any formula.

(2) -i',, „

(3) ^Po(py^
(4) (py-^P)

(5) (py^p)^(
(6) r^PM P

(7) PDp
(8) P

(9) Q
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Thus if both 'P' and '~'P' are derivable, so is any

arbitrarily chosen fonnula ' Q\ Notice that this proof of

Theorem 4 depends on the following features of AX: A2,

A3, RST 1, RST 2, RST 3. Evidently the theorem will

hold for any system incorporating these features.

In order to establish our equivalences, it remains only to

prove the following:

Theorem 5: If ^X is consistent in sense (2), it is also

consistent in sense (1).

This theorem, however, is more difl&cult and we shall

defer its proof until we have actually established the con-

sistency and completeness o^ AX.

5. Consistency. How are we to know whether or not a

given set of axioms is consistent or not ? Clearly it would

be impractical to deduce theorems from the axioms until

we arrive at a theorem which contradicts a formula already

estabUshed as valid. For however long we persist with our

deductions, we can never be certain whether the contra-

diction still remains to be discovered or whether the axioms

are, after all, consistent. Fortunately, there is a more

practical method of deciding whether or not our axioms

are consistent. We do so by a procedure equivalent to

the truth-table method by which we decide whether or not

a given WFF of the propositional calculus is a tautology.

We construct what is called a " finite model" in the following

way. Let the propositional variables '/?', 'q\ 'r'... be

regarded as before as taking one or other of two numerical

values. We need not, however, interpret these values as we

did previously when we regarded ' 1' as representing "true"

and '0' as representing "false". Let us merely say that

each variable may take one (and only one) of the two

values 1 and 2 on any particular occasion of its occurrence.
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Let us further define 1 as 2 and '-^ 2 as 1, thus

;

Again, we define the values of compound propositions

linked by the constant 'V by considering the constant as

an operator analogous to the multiplication sign in arith-

metic, so that we can construct a "multiplication table"

for it, as follows

:

ib) 1 V 1 = 1

1V2 = 2

2V1 =2
2V2 = 2

or, more concisely and conveniently,

V
1 1 2

111
By using tables {a) and (/?) we can evaluate any WFF and

assign to it one of the two values 1 or 2 for each combination

of values of the propositional variables. For example

:

ly 1=2
2V2 = 2

1 V ] = 1

1 V 2 = 2

Thus 'r^pV q' takes the value 2 for three of the four

possible cases and the value 1 for the remaining case where

/7 = 2 and ^ = 1

.

Now let us evaluate, by this means, the axioms which

we selected above. We shall, first of all, have to write

them in terms of ''^' and 'V thus:

A 1. '(/? V/7) D/7' becomes ''~(/7 V/;) V;?'.

p ^7

1 1

1 2

2 1

2 2
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A 2. ' q "D (p W gY becomes '--^ qW (pW q)\

A 3. "(py q)D(qy p)" becomes '^ (pW q)W (qW p)\

A 4. ' (^ D r) D ((p W q)^(py r)) ' becomes

'~ (~ ^ V /-) V (~ (/7 V (7) V (/7 V a))'.

Now evaluate them in accordance with (a) and (b)

above as follows

:

A 1. ^(p V p) M P

2 11112
1 2 2 2 1 2

1

2

A 2. ~ ^/ V (/' V ^)

2 1
'2

1 1 1

1 2 2 1 2 2

2 1 2 2 2 1

1 2 2 2 2 2

A3. '
—

'

^P V ^y; V W V /V

2 1 1 1 2 1 1 1

1 1 2 2 2 2 2 1

1 2 2 1 2 1 2 2

1 2 2 2 2 2 2 2

A 4. ~ (~ ^ V /) V (-- (^ V q) w (p y /•))

1 2 1 2 1 2 2 1 1 1 2 1 1 1

1 2 1 2 2 2 2 1 1 1 2 1 2 2

2 1 2 1 1 2 1 2 2 1 1 1 1

1 1 2 2 2 2 1 2 2 2 1
T 2

1 2 1 2 1 2 2 2 1 2 2
-)

1

1 2 1 2 2 2 2 2 I
-) T 2 2

2 1 2 1 1 2 2 2 2 2 T 2 1

1 1 2 2 2 2 1 1 2
->

2
-» T -)
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It will be seen that each of the axioms takes only the

value 2, Now if we can show that this property is retained

when the axioms are subjected to the transformation rules

of the system, it will follow that all theorems which can be

deduced from the axioms likewise take only the value 2.

And, if this is so, no two contradictory theorems will be

provable in the system. For of any two contradictory

theorems, if one takes the value 2, the other must take the

value 1, since '^2=1. We have therefore to show that

the property which the axioms possess of taking only the

value 2 is unaltered by the application of the transformation

rules of the system.

It is easy to show that the rules of substitution (RST 1

and 2) cannot affect this property. In the case of RST 2

(the rule of substitution by definition) the conclusion is

obvious. For since 'P'DQ\ for instance, is defined as

equivalent to '^P\/Q\ the substitution of 'PoQ'' for

' '^ py Q" cannot possibly affect any of the values taken by

a given expression. And the case is similar for the other

defined equivalences. And it is hardly less obvious that any

expression which is the result of applying RST 1 to any of

the axioms cannot take a value other than 2. For the

method by which we have evaluated the axioms and ascer-

tained that they take the constant value 2 ensures that we

have taken account of all the possible combinations of the

values of the individual propositional variables. A uniform

substitution of a WFF for a given propositional variable

throughout an axiom in accordance with RST 1 could result

in the axiom taking the value 1 on only one condition. That

condition is that such a substitution could add to the

number of combinations of I's and 2's involved in the

evaluation of the expression. And this is impossible since

the method we have used takes account of all the possible

combinations.
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We can also see that application of the rule of inference

(RST 3) to any two valid formulas cannot result in the

establishment of a fonnula which takes the value 1 for any

combination of its constituent propositional variables.

For any formulas which are validly deduced from the

axioms by the application of RST 1 and 2 will, as we have

seen, take only the value 2. And if we deduce 'g' as a

consequence from two established formulas 'P' and 'PO Q\
we may argue as follows to show that ' Q ' must take only

the value 2. Both 'P' and 'P^Q\ being established as

valid, will take only the value 2. Now since P = 2,

r^p=l. Therefore, since 'P^Q' is equivalent to

'~PVg', and since '^--'PVQ' takes the value 2 and

'~P' takes the value 1, '2' must take the value 2. [If it

did not, then (1 V 1) = % contrary to our definitions.]

Lastly, we can show that the rule of adjunction (RST 4)

when applied to any two vahd formulas cannot result in

the conjunction of the two formulas taking the value 1.

We have to show, in other words, that if 'P' and '2' each

take the value 2, then 'P. g' must likewise take the value 2.

We know that 'P.g' is equivalent to '~(~PV'^0'.
Thus 2.2 is equivalent to '^ (~ 2 V ^ 2) which is equivalent

to -^ (1 V 1) or -^ 1, i.e. 2. Thus no application of the

transformation rules of the system to the four axioms, or

to any deducible consequences of the axioms, can result

in an expression taking only the value -^ 2 or 1 . Thus

the axiom set is consistent.

6. Independence. A set of axioms is independent if no

member of the set can be proved as a theorem on the basis

of some or all of the other members of the set. It is not

a radical defect of logic in an axiomatic system if the

axioms should prove not to be independent. Nevertheless,

it is a defect of elegance and economy if an expression

which is, in fact, deducible as a theorem is used as an
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unproved starting point. For this reason, logicians always

try to ensure that the axioms which they select as their

starting point are independent in this sense.

But how are we to ascertain whether or not our axioms

are in fact independent? Clearly, it is not practical to

prove the independence of A 4, for instance, from A 1-3 by

trying to prove A 4 from A 1-3 and taking our failure as

evidence of independence. For, as we have already

remarked in discussing consistency, we could never be

certain, however long we persisted with such a method,

that A 4 could not be so proved. But again the method

of constructing finite models offers us a direct means of

finding out whether or not the axioms which we select as

the starting point of our system are independent of one

another. We proceed as before by assigning numerical

values to the propositional variables comprising the

axioms in such a way that all the possible combinations of

numbers assignable to the variables are exhausted. And
we construct tables showing the effect of the operators

'^ ' and 'V on the values assigned.

Let us first of all prove the independence of A 1 from

A 2, A 3, and A 4. We postulate that the propositional

variables may take any one of the three values 0, 1,

and 2. The operators ''--'' and 'V shall be understood as

follows

:

{a)

1

'
ib) V 1 2

1 1 1 2

2 2 2 2

Thus, for example, •^ 1 = and ~ 2 = 2 ; and

2V0=0, 2Vl=2, and so on. We can now evaluate

axioms A 1-4 as follows, after first stating them, as for

the proof of consistency, in terms of the constants *'--''

and 'V.
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A 1, ^ ip V p) V

1 "o T
1 1 1

1 2 2 2
1

A 2. ^ q V ip V ^)

1
0~~0

I 1

2 2 2

1 1

1 1 1 1

2 1 2 2

1 2

1 2 2 1

2 2 2 2

A3. ^ {p ^ q)

\ 00
10 1

10 2

11

111
2 12 2

2 1

2

"o o'

1

1

1

1 1 1

2 2 1

2

1 2 2

2 2
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A 4. (_ ,/ V /•) V (- {p M q) y {p M /•))

I 1

I 1 1 1

2 1 2 2 2

1 1 1

1 I 1 1 1

1 1 2 1 2

1 2 2 2

2 2 2 2 1 2 1

1 2 2 2 2 2

1 1

1 1 1 1 1 1

2 1 2 2 2 2 2

I I 1 1

1 1 1 1 1 1 1

1 1 2 1 1 2 2

1 2 2 2 2 2

2 2 2 2 1 2 2 2 2 1 1

1 2 2 2 2 2 2 2 2

1 1 1 2 2

1 1 1 1 2 2 2 2 1

-)

I 2 2 1 2 2 2

1 1 2 2 1 2

1 1 1 2 2 1 2 2 1

1 1 2 2 2 1 2 2

1 2 2 1 2 2 2

2 2 2 2 1 1 2 2 2 2 2 1

1 2 2 2 1 2 2 2 2

It will be seen from a comparison of these tables that

A 2, A 3, and A 4 take only the value 0, whereas A 1 takes

also the value 2 (for the case where p = 2). And it has

already been shown in the proof of consistency that the

application of the transformation rules to the axioms

cannot result in the valid formulas so deduced taking any
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new values. Thus no deductions from A 2-4 can give any

expression which takes any value other than 0. And, in

particular, A 1 cannot be so deduced. Thus the inde-

pendence of A 1 from A 2-4 is proved.

Similar methods will establish the independence of the

other axioms but it will not be necessary to set out the

details of the evaluations. (The reader should work them

out himself for practice.) We may demonstrate the

independence of A 2 by evaluating the axioms in accordance

with the following tables

:

(c) __!^ (cI)

2

1 1

2

Evaluation of the axioms in accordance with these tables

gives the following results. A 1, A 3, and A 4 take only

the values and 1 ; but A 2 takes in addition the value 2

(for p = 2 and q = 1). Thus A 2 is independent of the

other three axioms.

The independence of A 3 may be shown by evaluating

the axioms in accordance with the following tables

:

V 1 2

'o

1 1 2

2 2

(e) :-_ (/)

1

2

V 1
1 3

" 0~

1 1 2 3

2 2 2

3 3 3 3

This model gives only the value for A 1, A 2, and A 4,

but A 3 takes also the value 3 for the case where p = 2

and q = 3. For here we have: (~ (2 V 3) V (3 V 2))

= ('^ V 3) = (1 V 3) = 3. [It should be noted that as in

this model the propositional variables can take any one of

the /our values 0, 1, 2, and 3, the evaluation tables are

proportionally more complex. We need four rows for A 1

:

sixteen (or 4^) rows for A 2 and A 3 ; and sixty-four (or 4^)
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for A 4. which contains the three propo'^itjonal vari.ibles

p, q, and /".]

Lastly, the independence of A 4 can be shown by a model

constructed as follows:

1

I

2 3

3

V 1 2 3

U U

1 1 2 3

2 2 2
o
J 3 3

In this model, A 1-3 can take only the value 0, whereas

A 4 lakes the value 2, if ;? =^ 2, ^ =-= 3, and /• ^ 1. Then

we have:

~ (~ 3 V 1) V (^ (2 V 3) V (2 V 1))

= ^ V (- V 2) = 1 V (1 V 2) = 1 V 2 --- 2.

It is important to notice that the rules of inference, as

well as the axioms, must be satisfied by the models we
choose. For example, in RST 3, the models must secure

that if '
P" and 'PD Q' both take the designated value, in

this case the value 0, in the appropriate model, then 'g'

takes the same value. Likewise, if 'P' and 'O' each take

the value 0, then 'P. g' must also take the value 0.

7. The Derivation of Formulae. We now give some

further derivations. We shall use the sign ' H' as an

abbreviation for "is derivable". Thus ' h p Z) p' means

""p'Dp' is derivable" and so on. We shall also need to

say that a certain formula is derivable provided that a

certain other formula is derivable. So, for example, we

write

:

pz:>p\-pz> ip-Dp)

meaning "'/? Zi (p D p)' is derivable if '/? D/)' is derivable"

and so on.
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The axioms, rules of transformation and definitions of

AX are reprinted here for convenient reference:

Axioms.—A 1. (p y p) "Dp. A 2. q'D{p ^ q).

A3. (pyq)D{qyp). A4. (q D r) O {(p ^ q) ^ {p ^ r)).

Rules of Transformation.—RST 1. Uniform Substitution;

RST 2. Substitution by Definition; RST 3. Detachment;

RST 4. Adjunction.

Definitions.—DcL 1. P.O = ar^i^P^^Q)-
Def. 2.Pz>Q=af^P^Q-
Def. 3.P = g= a;{P^Q)iQ^P)-

D 1. {p-D^p)D^p.
D2. (^D/-)D((/t)D^)D(/^D/)).

D 3. r^py p.

These have already been proved (Examples 1-3, Section 3).

Given h P D g and V Q'D R, we see from D 2 that

VP'D R, no matter vv^hat 'P', ' Q\ and '7?' may be. Thus

we have also the following derived rule

:

DR 1. If HPDg and hg DP, then hPD/?.

An example of the use of DR 1 is the proof of:

D4. pz>{p\fq).

Proof.—

(1) p^iqyp) A 2, RST \,plq.qip.

(2) {qyp)Z^{pyq) A 3, RST \,q/p,plq.

(3) poipyq) (1), (2), DRl.

It will be seen that an application of DR 1 can ahvays be

eliminated in favour of D 2, RST 1 , and two applications

of RST 3.

D5. iipyq)yr)Z>i(p\/q)\/iqyr)).

Proof.—
(1) roiqyr) A 2, RST, \, rlq, q'p.
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(2) (r D(qy r)) D {((p y q) W r) A 4, RST 1 , r/g, (p V ql'p,

Z^((pyq)\f(qyr))) {q^ r)lr.

(3) ((/^V^)V/-)D((/;V^)

V (^ V /•)) (1), (2), RST 3.

D6. (pyq)D((ryq)yp).

Proof.—
(1) q-DirMq) A 2, /•//?.

(2) (gD(rVg))D((/pV^)

D{py{ry q))) A 4, RST I . (/• V q);,-.

(3) (Z' V ^) D ((/^ V (r V ^y)) (1), (2), RST 3.

(4) (/7 V (a- V ^)) D {{r yq)\tp) A3, (/• V q)/q.

(5) (/) V ^) D ((/• V ^) V /7) (3), (4), DR 1.

D 7. (r V (p V q)) D (/• V (/) V (q V i))j.

(1) qO(qyp) A2, A3, DRl.

(2) qD(qys) (I), RST \, s/p.

(3) (^D(^V5))D((/7Vg)

D (/? V (^ V 5))) A 4, RST 1 , (g V ^)/a-.

(4) (/7V^)D(;7V(9V5)) (2), (3), RST 3.

(5) ((pyq):D{py(qys))) A 4, RST 1, r/p,

DiirWipyq)) (pyg)lq,
D(rV(/?V(^V5)))) {P'^{q^s))lr.

(6) (a-V(/;V^)) (4), (5), RST 3.

D (/-V(;jV(^V5)))

D8. ((/'V^)V(^Vr))D(/^V(gVr)).

(1) ({pyq)M(qyr)) D6, RST 1,

Oi(py(qvr))y{pyq)) (p ^ q)lp,

(q V O/;^, p/r.

(2) ((/7 V (^ V r)) V (/7 V ^)) D 7, RST 1,

Z>({py(qyr)) {P^ {q'J >))!>, rIs.

V(pV(^V/-)))
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(3) {{p'Jiqyr))W(py{qMr))) AKRSTl,
D (/? V (^ V /•)) (P^igy r))lp.

(4) {{pyq)M{qMr)) (1), (2), DR 1.

D(;7V(^V/-))V(/7V(^Vr)))

(5) ((pV^)V(^VA))D(/^V(^Vr)) (3), (4). DRl.

D9. ((/?V^)Vr)D(/;V(^Vr)).

P/-00/.—By D 5, D8, DR 1.

D 10. (pyiqyir))^({pyq)\/r).

Proof.—This can be obtained from D 9, using A 3,

DR 1, etc., and relettering.

Dll. py^p.

Proof.—VsQ A 3, D 3, RST 3.

D12. pH(qZ3(p.q)).

Proof.—
(1) (~/? V-.^) V~(~/) V --^) D 11, RST 1,

{^ py ^ q)lp.

(2) {^py r^q)y{p.q) (1), RST2, Def. 1.

(3) {{^pyr^q)y {p.q)) D 9, ^ pjp,

0{r^p V (~(7 V (p.q))) ^qlq, {p.q)/r

(4) r^pyji^gy(p.g)) (2), (3), RST 3.

(5) pz>(qz>(p.q)) (4), RST 2. Def. 2.

D 12 gives us a further derived rule:

DR 2. If h P and K Q, then VP.Q (Rule of Adjunction,

RST 4), (thus proving this rule derivable).

Using D 9, D 10, DR 2, and Def. 3, we obtain:

D 13. {(pyq)yr) ^(py(qyr)).

The following are relatively easy to prove:

D14. ipyq) ^^{qyp).

D 15. p-D p.

D\6. -^^pDp.
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n 1 7. - - pp.
D 18. ip Dq)-D{'^q1> ^ p).

D 19. {^q-D^p)::>{p-Dq).

D20. i'^qZir^p) {p-Dq).

D21. {p.q) D {q.p).

D22. (/7.^) =(^./0.

D 23. /J ^ /;.

D24. /7.^ = ~(~^V^^).
D25. {pZ)q) = {^p^q).

D26. (/7V(7) E= r^{r^p.^q).

D27. ;7.(^./) -(/;.9).r.

D28. (p.q)Z>p.

It will be seen that D 1-28 above include many of the

reference formulae set out in Section 6 of the previous

chapter. (In particular, RF 7-11 and 14-17.) We still

need to derive RF 12 and 13 which are a little more difficult.

We first need:

D29. (p^{pDq))^(p^q).
D 30. (pD{q^ /•)) D (q ^{pO /))•

Then we proceed:

D31. {pyiq.r))Z>i{pyq).(pyr)).

Proof.—

(0 iq.r)Dq D 28, RST 1, q/p, r/q.

(2) i(q.r)^g)Z>(ipy{q.
:D(pWq))

r)) A4,RST\,(q.r)/q,qlr.

(3) {py{q.r))^(pyq) (1), (2), RST 3.

(4) (q.p) ^ (p.q) D 21, RST I, qlp,plq.

(5) (q.r)Or (4),D28,DR1,RST I, r/p.

(6) (p\l(q.r))0{p\lr) A 4, RST 1, (q.r)lq,

RST 3.

(5),
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(1) (/'V^)D((/7V,-) D 12, RST l,(;)Vr/)//7.

Z^({pMq).{pyr))) (pyr)/q.

(8) (py(q.r))0({pMr) (3), (7), DR 1.

Zi((pMq).{pyr)))

(9) {{p V (q.r)) D ((p V /) D 30. (p V {q.rXp. (p Wr)q

D(/;V^/).(/;V,))) ((/;V^y).(pV /-))/•.

D ((/^ V /-)

=3((/^V(^./-))

D(/)V^).(/7Va-)))

(10) (/>V,-)D((/7V(^.,-)) (8), (9), RST3.
0(pyq).(pyr))

(11) (/^V(^..))D((/^V(^./)) (6),(10), DRl.
=»((/' Vr/).(/;V/-)))

(12) (ip V (^.r)) D {(p V (^.z)) D 29, /. V (f/.r)//;.

Di(pyq).(py >)))) ((pyq).(py r))!q.

Z3((py(q.r))

^({pyq).{pyr)))

(13) (py(q.r)) (11), (12), RST3.

Z)i(pyq).{pyr))

Given this result, the required equivalences present little

difficulty. We have:

D32. ((pyq).{pyr))^(py(q.r)).

D33. (py(q.r))^iipyq).(pyr)).

D34. (p.{qyr)) ^^ ((p.q) y (p.r)).

D 34 and D 33 are RF 12 and 13 respectively.

8. Completeness. We now outline the method to be used

for proving the completeness of AX. We shall pro\e

completeness first in sense (1), that is to say, we shall pro\e

that every tautology is a derivable formula of AX and

therefore every extension of AX must result in the deriva-

bility of formulae which are not tautologies. For this
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purpose, we need the following results concerning tauto-

logies:

Theorem 6: Every tautology is reducible to a tautology

in conjunctive normal form.

Theorem 7: A formula in conjunctive normal form is a

tautology if and only if every one of its component dis-

junctions is a tautology.

Theorem 8 : A disjunction is a tautology if and only if it

contains at least one propositional variable and the negation

of that variable.

These were established in Chapter III. Now we can

prove the completeness of AX with the aid of Theorem 6

if we can prove the following:

I. Every tautological CNF is derivable in AX.

II. If any formula 'P' is reducible to a CNF derivable in

AX, then 'P' is derivable in AX.

Given I and II, it is evident that the completeness of AX
follows from Theorem 6.

We shall now investigate the conditions required for a

proof of I. We can prove I with the aid of Theorem 7 if

we can prove

:

III. Every tautological disjunction is derivable in AX.
By "disjunction" here, we mean, of course, a disjunction

whose components are propositional variables or their

negations. It is clear that, if III holds, then by the Rule of

Adjunction (RST 4) every conjunction of tautological

disjunctions is derivable in AX. And since by Theorem 7,

every tautological CNF is a conjunction of tautological

disjunctions, every tautological CNF will be derivable in

AX. Now a tautological disjunction, with standard

ordering can, by Theorem 8, and successive applications of

D 9 and D 10 be transformed into:

i(P\lk)y ^k)M Q
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where '/*',
' Q' are disjunctions and 'A;' is some propositional

variable. So we have to show that all such formulae are

derivable.

By D 11 (Section 7), '/jV.~;?' is derivable, and so by

RST 1, 'ky r^k' is derivable, whatever '^' may be. By

A 2, we have:

and so by RST 1

:

{kM ^k)z:>{P\{k\l ^ k))

and by RST 3,'P w (k ^ ^ k)' is derivable. Now by D 10.

we have

and by RST 1,

(Py(ky^ k)) D {{P y k)M r^ k)

and again by RST 3, '(P V /:) V -^ A:' is derivable. Using

A 2 and RST 1 again, we have:

{{P y k)M '-^ k)-D QM (IP "J k)M ^ k)

and so, by RST 3, 'Q W ((P W k) V ^ ky is derivable;

whence by A 3, RST 1 and 3, '((P V /c) V ~ A) V ^' is

derivable.

This proves

:

Theorem 9 : Every tautologictil disjunction with standard

ordering is derivable.

We then have:

Theorem 10: Every tautological CNF is derivable. For

since every one of its component disjuncts is derivable.

so is the CNF by the Rule of Adjunction, RST 4.

We have now proved III (Theorem 9) and I (Theorem 10).

It remains now only to prove II. This is a more complex

matter and we must first reconsider the process of reduction.

It will be remembered that this was carried out by replacing

one expression by another according to certain reference

formulae. For example, if we have the formula
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'p D {'^ '^qOp)\y/e are allowed to replace the occurrence

of ''^ '^q' in this formula by an occurrence of "q\ thus

getting 'p'Diq'DpY and so on. Now such replacements

result in equivalent formulae because the reference formula

'r^r^q = q'' and its derivatives by substitution are

tautologies. Furthermore, if the original formula
'p "D {r^ r-^ q "D pY is a tautology, the formula obtained

from it is also a tautology. In general, we have:

IV. If ' Q = i?' is a tautology and if 'P (Q)' is a formula

containing ' g' and if '/* (i?)' is the result of putting '/?' for

an occurrence of ' Q' in 'P {Q)\ then 'P (0 = P (/?)' is a

tautology.

V. If ' ^ = P' is a tautology and 'P {QY is a tautology,

so is 'P(R)'' and conversely.

Evidently V follows from IV and the fact that IV preserves

equivalence is the fact that validates reduction by RF 7-17.

Now we have to prove something parallel to IV only with

"is derivable" for "is a tautology". Then we can show
that if 'P' is reducible to ' Q', and ' O' is derivable, so is 'P'.

This will give us II.

We now prove the statement got by putting "is derivable"

for "is a tautology" in IV. In other words:

Theorem 11 {Replacement Theorem): If 'Q = P' is

derivable and if 'P (P)' is got from 'P (QY by putting 'P'

for 'Q' in 'P(0' then 'P(0 = P(P)' is derivable.

We prove the theorem in three parts

:

Part 1. The theorem holds in the case of propositional

variables. For if 'P(0' is a propositional variable,

'P (0' is the same as ' Q' and 'P(RY must be the same as

'R\ so 'P (0 = P(RY is the same formula as ' g = P'.

Part 2. If the theorem holds for any formula 'P (Q)' it

holds also for ''~P(0'. Since the theorem holds for

'P(0', we have 'g = P HP(0 = P(P)'.
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ByD28, (PiQ) -^ P{R)}Z:)(P{0)D P(R))

and by D 19. (P {Q)-D P (R))Z) (-^ P {R) D -- P {Q})

and by r3R I. P{Q) - P (R)} Zi (-^ P (R) ^ -^ P (O)).

Likewise. {P{Q) P(R))Z){-^P{0]D ^ P{R}).

Hence. O R b ^ P (0) ^ ~- P (R).

- P{R) D ^P{0).

So by DR 2, O R \- -^ P (O) -^P{R).

Part 3. If the theorem holds for TiOy. 'S(O)', it

holds also for 'P{Q}y SiQY.

Since the theorem holds for ^ P (Q)\ ' S (0)\ we have:

O - RhPiO) - PiRh S{0) S(R).

So using D 28. DR 1, - R \-P{Q)Z) P{R). P(R)Z) P{0)

Q R\-S{Q)::>S{R).S{R)DS(Q).

R h (P (Q) y S {Q)) D {P (R) y S (O))

R \-(PiR)y S(0))Z)(P(R)y S{R)).

Rb{P{Q)y S (0) D (P {R) V 5 {R)).

R \-{P{R)yS(R))D(P{0)yS(Q)).

R h(P{0)y SiO)) - (P(R)ys(R)).

Since all formulae can be built up from propositional

variables, 'V and '^^\ introducing 'D ' and '.' by definition

where necessary, the theorem must hold for all formulae.

The equivalent of V then follows:

Theorem 12: If " Q -- /?' is derivable, and 'P(R)' is

derivable, then "PiQ)' is also derivable.

To complete our proof of H, we have only to show tliat

all the reference formulae 7-17, which are tautologies, are

also derivable. This has already been done in Section 7.

Thus:

Theorem 13: If any formula 'P' is reducible to a CNF
derivable in AX', then P' is derivable in AX.

By A 4. RST3. Q

SobyDR 1, Q
Likewise,

And by DR 2.
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From Theorems 6, 10, and 13 we have:

Theorem 14: Every tautology is derivable in AX.

We have already shown that all derivable formulae are

tautologies (in connection with consistency). Therefore:

Theorem 15: The class of derivable formulae in AX is

identical with the class of tautologies.

The completeness of a set of axioms may be explained in

two ways, (i) An axiom set is complete if it forms a

sufficient basis for proving all the tautologies of the system.

It has already been proved that ^ A' is complete in this sense,

(ii) The second (and stronger) sense of "completeness"

is this : a set of axioms is complete if the addition of another

independent axiom makes the set inconsistent.

We can prove as follows that AX is complete in sense (ii)

also. Suppose that 'P' is any WFF which cannot be proved

from the axioms. Then this expression will have a con-

junctive normal form (CNF) which we may call ' Q\ '
g'

will be of the form 'R^.R^-Ra i?„' where the R's are

disjunctions of negated and unnegated propositional

variables. But since 'P' and, therefore, 'Q' are not prov-

able from the axioms, at least one of the P's must contain

no mutually contradictory components. Call this disjunction

'Pfc'. We may perform a uniform substitution on 'Pfc' in

accordance with RST 1. We shall substitute '/?' for every

propositional variable which is not negated and '/^/j' for

every «e^a/efi^propositional variable. For example, if 'P^' is

:

(/? V ~ ^ V /• V ~ 5)

our substitution gives

:

(p y '^ '^ p w p y r^ <^ p).

And this, in turn, is equivalent to '(/? V/? V/7 V/?)' which is

equivalent to 'p\

But if 'P' is supposed to be a valid formula, then 'g' and,

therefore, 'P^' will be valid formulas. And since 'P^' can
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be written by substitution as '/?', 'p' will be a valid formula.

And this cannot possibly be the case, because by another

equally permissible substitution in accordance with RST 1

,

we can write ''-^/j' for every unnegated propositional

variable in '7?^' and '/?' for every negated variable giving:

(,
—

' p y r^ p y r^ p y r^ p)

which is equivalent to' r^p\ Thus the supposition that 'P'

cannot be proved from the axioms and is nevertheless a

valid formula leads to the conclusion that both '/» ' and ' -^ /?

'

are valid formulas. And this is a contradiction. Thus

A 1-4 are complete in the sense that if any independent

axiom is added to them, a contradiction will result. [The

reader should verify for himself that a similar pair of

substitutions cannot be made in an axiom of AX (or in a

theorem following from the axioms) consistently with

RST 1.]

BIBLIOGRAPHICAL NOTE
Chapter IV

A clear elementary account of the axiomatic development of

the propositional calculus wiU be found in Ambrose and Lazero-

vvitz (1), but no proofs of consistency, completeness, and inde-

pendence are given. An excellent elementary discussion from a

more general point of view is given in Tarski (31). The classical

treatment will again be found in Hilbert and Ackermann (12).

Eaton (10) gives a simple introduction to the axiom system of

Principia Mathematica (33).



CHAPTER V

ELEMENTS OF THE PREDICATE CALCULUS

1. Some New Forms of Inference. There are many
quite simple forms of inference, which are clearly valid,

but whose validity cannot be established by the methods

of truth-functional analysis which we have been examining

in Chapters II and III. Here are some examples:

(1) All ordinary members of the society pay an annual

subscription of one guinea, and all who pay an annual

subscription of one guinea receive the publications of the

society without further charge. Consequently, all ordinary

members of the society receive the publications of the

society without further charge.

(2) All missionaries have rigid views on morals, and no

one with rigid views on morals makes a good anthropologist.

Therefore, no missionaries make good anthropologists.

(3) All undergraduates have the right to use the university

library and some undergraduates are not seriously interested

in scholarship. Consequently, some who have the right to

use the university library are not seriously interested in

scholarship.

It will be noticed that the validity of these inferences

seems to depend in some way on the uses of the words

"all", "some", "none", and equivalent expressions and

on the way in which certain descriptive phrases (such as

"ordinary member", "pays an annual subscription of one

guinea", and the like) serve to link together the premisses

and the conclusion. It is clear that arguments of this sort

will not be vahd unless the linking of premisses to conclusion

satisfies certain conditions. It must therefore be our aim

99
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to Specify these conditions correctly. We hope thereby

to obtain a mechanical procedure for testing such argu-

ments and this will be useful in more complicated arguments

where intuition is not an infallible guide. Such a mechanical

procedure will, of course, be a decision method analogous

to the method of truth-tables or normal forms which we

have described in previous chapters.

It may be useful here, in order to bring out the essential

character of the arguments with which we shall now be

concerned, to refer back to the two examples which were

discussed at the beginning of the second chapter.

(4) All dangerous trades should be highly paid and

mining is a dangerous trade. Therefore, mining should be

highly paid.

(5) If mining is a dangerous trade, then it should be

highly paid. Mining is a dangerous trade. Therefore,

mining should be highly paid.

We saw that the subject-matter of these two arguments is

the same and that they have an identical conclusion.

Nevertheless, they are, from the point of view of logic,

fundamentally different in character. In the case of (5),

we can ignore the structure of the propositions "mining is

a dangerous trade" and "mining should be highly paid"

and test the validity of the corresponding logical skeleton

:

(6) {{p-Dq).p)^q.

But we cannot do the same in the case of (4). The logical

structure of the argument, if we pay attention only to the

propositions involved and not to the descriptive terms of

which the propositions are composed, would be:

(7) (p.q)z:>r.

Now this is clearly not a valid form. That is to say, an

argument of this form is not valid simply in virtue of being

of this form. Thus it is obvious that our failure to take
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account of the internal structure of the propositions of (4),

viz. "All dangerous trades should be highly paid", and so

on, has led to our missing the essential logical point of the

argument. If therefore we are to give an account of the

validity of arguments of the type "All A's are 5's and x is

an A ; therefore, x is a 5" we shall have to look into the

structure of those propositions which we have hitherto

taken as unanalysed units.

2. Singular Propositions. If, therefore, we are to fulfil

our programme, it is essential that we now consider the

analysis of propositions into elements which are not them-

selves propositions. This is in striking contrast to our former

procedure where propositions were regarded either as

compounded from other propositions or as irreducible

elements. We start with the very simplest kind of proposi-

tion, the singular proposition. A singular proposition may
be defined negatively as one which does not contain

truth-functional connectives (logical constants) and which

also is free from such words as "all", "none", "some", and

their equivalents. Here are some examples of singular

propositions

:

(1) Smith is bald.

(2) Smith is older than Jones.

(3) Reading is between Oxford and London.

It is clear that the result of analysing these propositions

will not be other propositions but something else which we
shall call generally terms. Example (1) contains two terms,

"Smith" and "bald". Example (2) has three terms,

"Smith", "Jones", and "older than"; (3) has four

terms, "Reading", "Oxford", "London", and "between".

And we can imagine propositions containing more than

four terms, although they are not very common in practice.

In any case, we shall be concerned in this chapter only
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with singular propositions containing just two terms like

proposition (1). The more complicated singular proposi-

tions introduce complexities which are not well suited to an

elementary discussion.

Let us now have some more examples of singular

propositions containing just two terms

:

(4) (Smith) is (bald).

(5) (London) is (the largest city).

(6) (Mr Churchill) is (the present prime minister of

Great Britain).

(7) (Italy) is (a country with a warm climate).

In each case we have marked off the two terms. And it

will be seen that, in each case, one of these terms is a

proper tianie and the other term is a descriptive word or

phrase. The proper name is said to be the logical subject

of the proposition and the descriptive word or phrase is

called the logical predicate. (The reader will notice that

these terms are adapted from the technical terms of

grammar. There are, however, considerable differences

between logical and grammatical subjects and logical and

grammatical predicates, and it should never be assumed

that the logical subject of a given proposition is the same

as the grammatical subject of the corresponding sentence

or that the logical predicate of a given proposition is the

same as the grammatical predicate of the corresponding

sentence. This will, in fact, by no means always be so.)

It is clear from the examples given that a singular proposition

says that a certain object, specified by a proper name,

satisfies a certain description. And the proposition will

be true if and only if the object does in fact satisfy the

description.

In the sequel, we shall often require to make statements

which will be true of any arbitrarily given singular pro-

positions. We shall therefore use such letters as 'a', 'b\
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'c' (or 't/i', 'flo', 'a^', . . .) to stand for arbitrary proper

names and the letters '/', 'g\ '/z' to stand for arbitrary

predicates. The letters 'a', 'b\ 'c', which stand in this

way for proper names, will be called individual constants.

The letters '/', 'g\ 7/', . . . will be caWcd predicate constants.

Arbitrary singular propositions will then be symbolised

by such combinations 'fa', 'ga', 'fb\ and so on. We shall

therefore understand the symbolic expression 'fa' to be

read as :

"a has the property/",

where 'a' is understood to be functioning as a proper

name.

These combinations of letters and some others to be

introduced later are called predicate formulae. (We shall

refer to them, for short, as formulae where, as usually in

the present chapter, there is no danger of confusing them

with the propositional formulae discussed in previous

chapters.) These formulae may be interpreted as standing

for any singular propositions, according to the meanings

which we choose to assign to the letters 'a', 'b\ '/', 'g',

etc. Thus it is impossible to discuss the truth or falsity

of a formula. It is only when we interpret the individual

constant 'a' and the predicate constant '/' of the formula

'./a' that we can assign the value "true" or "false". And
then we shall be speaking of the proposition which results

from giving this interpretation to the 'a' and the '/' of

'fa'. For example, if we interpret 'fl' as "London"

and '/' as "a large city" we get the true proposition

"London is a large city". Once the interpretation is

known, the truth-value can, in general, be assigned but it is

an important property of some formulae that they may

come out true under one interpretation and false under

another. For example, in the example given above, '/a'

takes the value "true" if we interpret 'a' as "London"
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and '/' as "is a large city" but takes the value "false"

if we read 'a' as "London" and '/' as "is a small town".

The reader may be a little puzzled by the fact that '/',

'«' are called constants, when '/a' can be interpreted to

mean any singular proposition that we choose. The reason

is that the term "individual variable" is required to mean
something quite different as will become clear in Sections

5 and 6. The matter is discussed more fully in Section 9.

A point to be noticed is that the use of the term " variable"

in the predicate calculus is subject to restrictions which

are not applicable to the more intuitive sense of the word

already introduced in the phrase "propositional variable"

in Chapters II, III, and IV.

3. Further Remarks on Proper Names and Descriptions.

The distinction between proper names and descriptions

has been the subject of a good deal of philosophical dis-

cussion. Fortunately the objects and results of this

discussion are almost entirely irrelevant to the study of

elementary logic. For our purposes, anything which is

grammatically a proper name is also logically a proper name.

But there are one or two possible confusions which we

should guard ourselves against.

The first point to make clear is that propositions like

"A man is bald" or "Some man is bald" or "The horse

is a noble animal" are Tiot singular propositions, because

they contain no proper name. They are, in fact, in spite

of their simple appearance, complex propositions of a

type which we shall discuss in their proper place. The

second point is that, although a proper name is uniquely

assigned (that is, in the course of a particular argument it

must be used to refer to one and only one individual), this

is not a defining characteristic of proper names. Some
descriptions, as, for example, "the present queen of

England", can, of their nature, describe one and only one
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individual. They are, nevertheless, descriptions and not

proper names. We can bring out the difference between

these uniquely descriptive phrases and true proper names

by pointing out that some descriptions of this type do not

describe anyone or anything. Consider, for example, the

phrase "the present king of France". A proper name, on

the other hand, must refer to an individual.

If we require some further insight into the difference

between a proper name and a description, we may consider

the following example. The word "Palumbo" is a proper

name. But if you knew that you were going to see Palumbo

to-morrow, you would not know at all what to expect.

It might be a man, a horse, a dog, a mountain, a river, a

city, or numberless other things. The name "Palumbo"
does not give you the smallest clue as to the nature of the

thing named. In other words, it is not descriptive.

4. Relations between the Propositional Calculus and the

Predicate Calculus. It is important to realise that our

transition from the logic of unanalysed propositions to

the logic of predicates does not involve a sharp break with

our previous methods of treatment. The predicate calculus

is based on the propositional calculus and uses its methods

and its notation so far as these are applicable to the new

types of logical structure with which it has to deal. The

propositional formula '/? V ^' represents a compound pro-

position which is composed o{ any two simple propositions

united by the word "or" taken in its inclusive sense. It

might represent any of the following propositions (l)-(6) or

any of an indefinite number of others of the same form

:

(1) Either all men are mortal or twice two are five.

(2) Either Reading is between Oxford and London or

twice two are five.

(3) Either Jones is dishonest or some accountants are

careless.



106 ELEMENTS OF THE PREDICATE CALCULUS

(4) Either Jones is dishonest or Jones is foolish.

(5) Either Jones is dishonest or Smith is dishonest.

(6) Either Jones is dishonest or Smith is mistaken.

Suppose, however, we replace the compound pro-

positional formula 'p^ q' by the predicate formula

'fa^ ga\ This certainly stands for a disjunction of

propositions but not for a disjunction of any two pro-

positions as does 'p ^ q\ It stands only for a disjunction

of any two singular propositions with the same logical

subject but different predicates. Of the examples (l)-(6)

above, it therefore represents only (4). We could similarly

represent (5), which is a disjunction of two singular pro-

positions with the same predicate but different subjects

by 'fayfb\ And example (6) which is a disjunction of

two singular propositions differing in both subject and

predicate would be symbolised by 'fa V gb\ But examples

(1), (2), and (3) above each contain as a term in the disjunc-

tion at least one simple proposition which is not a singular

proposition. [For example, "some accountants are care-

less" in (3).] They cannot therefore be symboUsed with

the logical apparatus so far at our disposal other than as

unanalysed propositional units in the formula 'pW q\
It will be seen therefore that predicate formulae of the

type '/a', 'fb', 'gb\ . . . stand for propositions just as do

'/j', 'q\ V, . . . in the propositional calculus. The only

difference is that the predicate formulae give some idea of

the internal structure of the propositions for which they

stand while the propositional formulae do not. We may
thus use in developing the calculus of predicates the

apparatus of logical constants and brackets which we have

used so far in the logic of propositions.

For example, the formula

:

{{pOq).{^rD^q))^{pDr)
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is a valid formula of the propositional calculus. Similarly,

{{fa D ga) . {r^fb D - ga)) D {fa Ofb)

is a valid formula of the calculus of predicates. The

difference between the two is merely that the second gives

us the additional information (i) that the propositions

involved are all singular propositions ;
(ii) that the first two

propositions have the same subject but different predicates

and the third proposition has the same predicate as the

first but a different subject.

We may thus regard the calculus of predicates as a

branch of logic which includes the calculus of propositions

but goes beyond it. It includes it in the sense that, if any

formula is valid in the calculus of propositions, the corre-

sponding predicate formula will be valid in the predicate

calculus. But it goes beyond it in the sense that it makes

the structure of its propositional material explicit. And
because of this it is able to deal with forms of argument

which, on account of their complexity, are beyond the

scope of the propositional calculus.

5. The Particular Quantifier: Existence. Consider the

following propositions

:

(1) Centaurs exist.

(2) Horses exist.

These are not singular propositions, since they contain

no proper names. On the other hand, the word "exist"

can hardly be called a description. The assertion that

horses exist does not tell you what kind of things horses

are. How, then, are such propositions to be analysed ?

Now let us consider the two sentences

:

(3) There is something which is a centaur.

(4) There is something which is a horse.
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Clearly, these two sentences express exactly the same

propositions as the first two, though the form of expression

is, perhaps, less usual. Now we can split (3) and (4) each

into two parts as follows

:

(5) (There is something) (which is a centaur).

(6) (There is something) (which is a horse).

This phrase "there is something" expresses one of the

fundamental concepts of logic and it is not capable of

further analysis. It is called the particular quantifier (or,

alternatively, the existential quantifier). The relative

pronoun "which" is also fundamental and we shall see

that the part it plays in logic is something like the part

played by a variable in elementary algebra. In fact, we use

the letters '.r', 'v', "
z" in logic in place of the written word

"which" and also in place of the word "something".

Thus (5) and (6) become:

(7) (There is an x) {x is a centaur).

(8) (There is an x) {x is a horse).

Now using the arbitrary letters '/' and '^' as predicate

symbols, we put '/' for "is a centaur" in (7) and '^' for.

"is a horse" in (8):

(9) (There is an x) (fx).

(10) (There is an .v) (gx).

Lastly, we introduce the symbol '3' for "there is an"

getting

:

(ll)(3x)(/v).

(12) ilx){gx).

These expressions show the logical structure of proposi-

tions like "centaurs exist" and "horses exist" and it is

upon this structure that the logical properties of these

propositions depend.
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It may perhaps appear, at first sight, that the introduction

of this rather elaborate symbolic apparatus to express a

simple proposition like "horses exist" is pedantic and

unnecessary. This is, however, not the case. The discovery

of the correct analysis of existential propositions and the

devising of a logical symbolism which makes their structure

explicit has had important results both in logic and in

philosophy. Some of the logical virtues of this symbolism

will become clear as we proceed.

6. Analysis of some Quantified Propositions. Suppose

we want to say

:

(1) Centaurs do not exist.

Obviously, this is merely the negation of "Centaurs

exist", and will thus have the form

:

(2) '--' (3x) (x is a centaur)

or (3) - (3x) (fx).

Now consider

:

(4) Some centaurs are vindictive.

This becomes:

(5) (There is something) (which is a centaur and which is

vindictive).

And putting '/' for " is a centaur " and '^
' for " is vindictive ",

we have

:

(6) (3x){fx.gx).

Similarly :

(7) No centaurs are vindictive

becomes

:

(8) ^^ (Some centaurs are vindictive)

which has the form

:

(9) r^{3x)(fx.gx).
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Likewise

:

(10) All centaurs are vindictive

may be rewritten

:

(1 1) No centaurs are not vindictive

which has the form

:

(12) -(3x)(/v.~gx).

It must be noticed, in connection with expressions like

(6), that

(6) (3x) (fx.gx)

is Tiot the same as

:

(13) (3x)(fx).(3x)(gx).

With the meanings at present assigned to '/' and 'g\

(6) means:

(4) Some centaurs are vindictive,

whereas (13) says that something is a centaur and something

(which may or may not be the same thing) is vindictive.

That is to say, (13) means the same as

:

(14) Centaurs exist and vindictive things exist.

And this might very well be true even if no centaurs were

vindictive.

It must again be stressed that formulae hke ' (3a-) (fx) \

'(3.y) (fx.gx)\ and so on, may be interpreted to stand for

many different propositions. (In fact, any one of these

formulae may be interpreted in an indefinitely large number

ofways.) It is an important property ofsome such formulae,

that under some interpretations they express a true pro-

position and under others a false one. There are other

formulae, such as '(3.x) (/xV'^/y)', which clearly must

come out true, no matter what meaning we assign to '/'.

The only condition for the truth of such a formula is that

something, no matter what, should exist. Likewise, there
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are other formulae, such as '(3x) {fx.r^fx)\ which must

be false no matter what meaning we assign to '/'. (The

reader will notice that these three classes of predicate

formulae are precisely analogous to the contingent, tauto-

logical, and contravaUd formulae of the propositional

calculus.)

All the formulae which we have discussed so far, with

the exception of (13) above, are simple quantified formulae.

That is to say, they consist of a single quantifier followed

by an open* formula, such as '/x', 'fxy gx\ and so on.

For the present we shall confine our attention to such

formulae, taking up the more complex forms again in

Sections 10 and 11,

7. The Universal Quantifier. The proposition

:

(1) Centaurs exist

may be expressed, as far as concerns its logical structure,

in the form

:

(2) There is an x such that x is a centaur,

or (3) (3x) (fx).

The proposition

:

(4) Centaurs do not exist

is clearly the negation of (1) and has the form

:

(5) - (3A-) (fx).

But (4) may be expressed as

:

(6) Nothing is a centaur

or (7) Whatever x may be, x is not a centaur.

The form of expression "whatever x may be" is called

the universal quantifier and is expressed symbolically by

* For a more detailed explanation of "open formulae", see Section
9 below.
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'(.y)'. Hence the logical structure of (7) may be expressed

as:

(8) ix){^fx).

The proposition

:

(9) Everything is a centaur

has the form

:

^.^

(10) (x) (fx).

Evidently, then (5) and (8) have the same meaning and,

in a sense, the universal quantifier is superfluous. It can

be defined in terms of ' (3x) ' and ' '---'
' just as the constant '

.

'

can be defined in terms of 'V and '-->-''. But, of course,

we mightjust as well have introduced the universal quantifier

first and defined the particular quantifier in terms of it.

We can have either

:

(a) '(x) A' is defined to mean '~ (3a) ^ A'

or (b) '(3.t) A' is defined to mean ' -^ (a) ^--^ A'.

[We shall use expressions of the form '(x) A', '(3.t) B', and

so on, as abbreviations for ordinary quantified expressions.

The capital letters 'A', 'B', . . . will therefore stand for

simple or complex open formulae of the type 'fx\

'/x Ogx\ etc.]

Whichever we choose, it is clear that where 'A' is a

truth-function of expressions like '/v', ''gx\ etc., we can

always write '(a) A' in place of ''->-' (3 a) -^ A' or

'(3.y) A' in place of '--^ (a) ~ A'. And analogously, we

can always put '(a)'^A' in place of '~(3a)A' and

'(3a')'~A' in place of ''---' (a) A'. Thus if negation

signs appear in front of a simple quantified formula, we
can always eliminate them, first by the rule for striking

out double negations and secondly by the rules given here.

For this reason, the introduction of two quantifiers greatly

simplifies our treatment of simple quantified formulae.
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8. The Interpretation of Quantifiers as Conjunctions and

Disjunctions. The reader may have noticed, especially

in view of the analogy cited above, a certain similarity of

logical behaviour between the particular and the universal

quantifiers on the one hand and the logical constants 'V
and '

.

' on the other. Just as de Morgan's rules enable

us to transform propositional formulae of the type 'P.Q'

into '~(~PV~0' and 'PVQ' into '/^(^P.^g)',
so there is a corresponding duality between '(3a:)' and
' {x) ', so that they can be defined in terms of one another

with the help of the negation sign.

This may be made clearer by considering the relations

between quantified formulae and certain conjunctions and

disjunctions of singular formulae as follows. We have

seen that

:

(1) Centaurs exist

may be rewritten without change of meaning as

:

(2) (There is an x) {x is a centaur).

Now (1) and (2) assert that at least one thing has the

property of being a centaur. Consequently (1) and (2) are

true if and only if:

(3) Either a^ is a centaur or a^ is a centaur or a^ is a

centaur or . . . or a„ is a centaur

is true, where ai, a2, . . . a„ are all the individuals in the

universe. Thus

:

(4) (3A) (A)

will be true if and only if

(5) fa, Mfa, Mfa, V . . . Mfa,

is true. We have thus obtained a relation between the

particular quantifier and the logical constant 'V.

Similarly, to assert a universal proposition such as:

(6) Everything is material
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is to assert something which will be true if and only if

(7) is true.

(7) Hy is material and a^ is material and . . . and an is

material,

where aj, a^, . . . a„ as before are all the things in the

universe.

We should express (6) symbolically as:

(8) (x) ifx)

and (7) symbolically as

:

(9) fai .fa^ .fa:, /^„,

thus obtaining a relation between the universal quantifier

and a conjunction.

We shall call (5) and (9) the propositional expansions of

(4) and (8) respectively.

Now we know from the rules of the propositional calculus

that:

(10) {fa,Mfa,M...yfa,)^^{^fa^.r^fa, -/a„).

(11) {fay.fa, /^0 = -(~/^iV~/«2V...V^/a„).

And we saw above that, \i a^ . . . a^ represent all the

objects in the universe, the left-hand side of (10) is true if

and only if

(12) (3.T)(,/:x-)

is true. Furthermore (12) is equivalent to:

(13) ~(.v)(~./.v)

and (13) is true if and only if the right-hand side of (10) is

true. Similarly, the left-hand side of (11) is true if and only if

(14) (.v) (A)

is true. And (14) is the same as

:

(15) ^(3.r)(^7-v)
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which is true if and only if the right-hand side of (11) is

true. Thus the duality of the quantifiers '(x)' and

'(3x)' is a consequence of the de Morgan rules which are

laws of the propositional calculus.

It is important to note that this relation between quantified

formulae and certain conjunctions and disjunctions holds

in general only when the number of individuals concerned

is finite. But we do not need to consider the possibility

of infinite domains of individuals at this stage. (See

Chapter VI, Section 6.)

9. Free and Bound Variables: Constants. A certain

amount of confusion is apt to arise in students' minds about

the use of the terms "constant" and "variable" in logic.

A few words of explanation will therefore be useful at this

stage. In the part of logic with which this chapter deals,

we employ just si?c different kinds of symbols

:

(1) Individual constants : a, b, c, . . .

(2) Individual variables : x, y, z . . .

(3) Predicate constants : /, g, /?,..,

(4) Quantifiers : (x), (3x), {y\ (3>;), . . .

(5) Connectives (or Logical Constants): '~-', V, ., D, =.

(6) Brackets : ( ,
).

Starting with these, we define a class of well-formed

(or meaningful) formulae, as follows

:

(i) If 'a' is a predicate constant and 'j8' an individual

constant, or an individual variable, then 'a^' is a well-

fonned formula (or WFF, for short).

(ii) If ' A ' is a WFF, so is '~ (A) '.

(iii) If 'A' and 'B' are WFF's, so are •(A).(B)',

'(A)V(B)', and so on.
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(iv) If 'A' is a WFF containing o. free individual variable

'a', then '(a) A', '(3a) A' are WFF's.

By "a formula containing a free individual variable",

we mean a formula like \fx\ or '{y) ify "D gx)', where

there occurs a variable (in these cases 'x') which is not

preceded by an appropriate quantifier. Such formulae

are called open formulae and are contrasted with closed

formulae which do not contain any free variables. A
bound variable is one which is preceded by a suitable

quantifier. Thus in '(;>) {fy D gx)', 'j' is a bound variable

and 'x' is a free variable.

When we speak of truth or falsity in logic, we usually

mean the logical truth (or validity) and logical falsity (or

contravalidity or contradiction). In Chapter II, we

discussed this kind of truth and falsity in its relation to the

logic of propositions. But if we want to use the words

"truth" and "falsity" in their ordinary sense, we can do

so only by giving rules so that our formulae (or some of

them) can be interpreted to stand for propositions. Then

we shall say that a formula is true if and only if the pro-

position which it is interpreted to stand for is true. We
interpret a formula by assigning meanings to the constants

in it. Thus we might let 'a' mean the individual John and

'/' mean the property of being tall. Then we have given

to the formula '/a' the meaning that John is tall. And

'/fl' will be true if and only if John is tall. Of course, we

could interpret '/a' to mean something quite different;

the important thing is that once we have assigned a par-

ticular meaning to a formula in a given context, we must

stick to it.

The difference between constants and variables now

becomes clear.

(1) Constants cannot be quantitied.
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(2) IVe canfiot interpret, i.e. assign, a meaning to a

variable.

For this latter reason, formulae which contain free

variables cannot strictly be said to be true or false. Consider,

for example, the diiference between 'fa' and 'fx\ Suppose

'a' means "the number five" and '/' means "odd". Then

'/a' says that the number five is odd, which is in fact the

case. So '/a' is true under this interpretation. But '/v'

simply says that x is odd; and this is neither true nor

false.* We can, of course, say if we wish that "x is odd"

is true for some values of x and false for others.

The fact is that in logic we are not really very interested

(at this stage) in particular interpretations of formulae.

This is because we are not, as logicians, much interested

in factual or empirical truth ; we are interested rather in

logical truth. One of the main purposes of an exposition

of logic is to give a clear meaning to the phrase "logical

truth". And we propose as at least a partial explication of

"logical truth" the following:

A formula is logically true if and only if it is true no

matter what interpretation we give to the constant terms in it

This is essentially nothing but a clearer restatement of

the old doctrine that valid inference is independent of

subject-matter. (See Chapter I.) But it is not put forward

as a final definition or last word, so to speak. It just

happens to suffice for the present.

The other important point for the student to notice is

that the notion of logical truth (as distinct from factual

* Expressions like "x is odd", "x is red", and so on, are often

referred to as " propositional functions". A propositional function

was defined by Lord Russell, who introduced the term, as "an
expression containing one or more undetermined constituents such

that, when values are assigned to these constituents, the expression

becomes a proposition". (Introduction to Mathematical Philosophy,

pp. 155-6.) Because of certain technicalities connected with the use

of the term "propositional function" in Russell's logic, the term is

perhaps best avoided in an elementary discussion.
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truth) is extended to include open formulae. This is done

by saying that an open formula is logically true if and only

if its universal closure is logically true. That is to say,

'/x D/x' is logically true because '(.x) (fx "D fx)" is so;

and '(y) {fy "D gxY is not logically true because '(.y) {y)

ify D gx) ' is not logically true.

10. Interpretation and Satisfiable Formulae. A singular

formula, like '/a', can be interpreted to stand for a true

proposition or a false one. For example, if we give 'a'

the meaning "Socrates" and '/' the meaning "is mortal",

then ''fa'' will represent the true proposition "Socrates is

mortal". If we make 'a' mean "Plato" and '/' mean

"is ahve to-day", then '/a' has the meaning "Plato is

alive to-day" which is false. Thus any singular formula

may stand for a true proposition and we express this by

saying

:

I. Ayiy singular formula is satisfiable.

If now we consider truth-functions of singular formulae,

it is easy to see that these will be satisfiable if and only if

the truth-function is not contradictory. For if the truth-

function is not contradictory, there will be some inter-

pretation of the singular formulae in it which will make the

function true. For example, suppose that the function we

are considering is

:

(1) (fa\/fb)^gc.

Interpreting 'a\ 'b\ and 'c' by "Socrates", "Plato", and

"Aristotle" respectively and the predicate variables '/'

and 'g' by "mortal" and "intelligent" we get:

(2) If Socrates is mortal or Plato is mortal then Aristotle

is intelligent.

Analysing the truth-values of (2) we get

:

((1 Vl)Dl) = (lDl)=l.



SATISriABLO FORMULAE 11^)

Similarly, it is clear that we cannot make a contradictory

function true, no matter what meanings we assign to the

singular formulae. No interpretation can make:

come out true. For if '/a' is true, ' '^fa" is always false

and vice versa. And a conjunction cannot be true unless

both components are true. Thus contradictory truth-

functions will always be unsatisfiable. We therefore have

:

II. A truth-function of singular formulae is satisfiable if

and only if it is not contradictory.

Let us now consider formulae like '(3.t) (/x)',

'(3x) (/x Vg-x)', etc., which contain just one particular

quantifier. We know that '(3x) (/x)', for example, means

that there exists an object having the property '/' and this

will be true if and only if some singular formula of the type

'/a' is true. Likewise, '{ix) (fx Vgx)' will be true if and

only if some interpretation of the formula 'fay/ga' is

true. We have seen that where we have a formula of the

type '(3x) A' (in which the individual variables are bound

by a single particular quantifier), it can be expanded into

an equivalent disjunction of singular propositions (or

truth-functions of such propositions). For example

:

(4) {2x)(fx.r^gx)

can be expanded as

:

(5) (/fli . ~ ga^) V (fa, .
-' gao) V ... V (/«„ . ^ ga^l

Formulae of the type '(3x) A' will therefore be satisfiable

if and only if their propositional expansion is not con-

tradictory. For instance:

(6) (2x)(fx.^fx)

is expanded as

:

(7) (fa, . r^fa,) V (fa, . r^fa,) V ... V (fa, . -/a„)

which is clearly contradictory. Thus (6) is not satisfiable.

We therefore have

:
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III. Formulae of the type '(3a')A' whose individual

variables are bound by a single existential quantifier

are satisfiable if and only if their propositional

expansions are not contradictory.

Lastly, we have formulae like '(.v) A' whose propositional

expansions are conjunctions of the form :

(8) P^.P^.P^ Pn

where the P's are singular propositions (of the type 'fa')

or truth-functions of such singular propositions. Such a

formula as '(.\')A' says that everything satisfies the con-

ditions 'A'. That is to say, '{x) K' is true if and only if

the result of putting 'a' for '.r' throughout 'A' is a true

proposition, no matter what 'a' is taken to refer to.

Suppose, for example, we have the formula

(9) W ifx).

Granted that there is some property which is possessed

by everything in the universe and '/' is interpreted to stand

for that property, then '/«' will be true, no matter what

meaning we assign to 'a'. If 'A' is some molecular open

formula such as:

(10) {fxZigx)Mhx,

by putting 'a' for 'a' we get:

(11) {fa::>ga)Mha.

And this will be true for certain truth-values of the com-

ponents, for example: ((1 D 1) V 0) = (1 V 0) - 1. For

we can arrange for (11) to be true, no matter what 'a'

refers to, by choosing suitable meanings for 'f\ ' g"
, and

Vj'. Thus:

(12) (a-)((/vDi?a)V/;.v)

will be satisfiable. In general

:

IV. '(a-) A' is satisfiable if its propositional expansion is

not contradictory.
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11. Simultaneously Satisfiable Formulae. A pair of

formulae 'A' and 'B' are simultaneously satisfiable if we
can assign meanings to the predicate constants and the

individual constants (if any) in 'A' and 'B', so that both

'A' and 'B' express true propositions. (Of course, if the

same letter, for example '/', appears in both 'A' and 'B'

it must bear the same interpretation in both cases.)

Turning to the simple kind of quantified formulae which

we have been considering, we see that there are just three

possible kinds of pairs

:

(i) '(x)A'; '(x)B'.

(ii) '(x) A'; '(3x) B'.

(iii) '(3A-) A'; '(3x)B'.

[The case of '(3.t)A' and '(a:)B' is obviously the same

as (2).]

Now it is clear that, if formulae are to be simultaneously

satisfiable, they must be satisfiable individually. But this

is not the only condition. For "(x) (fxY and '(a) (-^/x)'

are satisfiable individually but they are not simultaneously

satisfiable. Obviously, if '(x:)(/x)' is true, then '/a' is

true whatever we suppose '«' to refer to. And similarly,

if '(x) ('^/v)' is true, then '--^/fl' is true, whatever be the

referent of 'a'. But if \fa' is true, then '^^fa' must be

false since '{fa.'^faY is a contradictory truth-function.

On the other hand, '(x) (/x)' and '(x)(/xDgx)' are

simultaneously satisfiable. And this is shown by the fact

that 'fa.{fa'D gay is not contradictory. This may be

tested by constructing a truth-table

:

fa . (fa D ga)

11111
10 10

11
10
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If the expression were contradictory, the second column

(under the conjunction sign) would consist entirely of O's.

(The reader should construct for contrast the table for

Consequently we have the rule

:

I. \x) A* and '(x) B' are simultaneously satisfiable if

and only i/'A.B' is truth-functionally consistent*

Similar reasoning gives us

:

11. '(x) A' aTid '(3x) B' are simultaneously satisfiable if

and only z/'A.B' is truth-functionally consistent *

When we turn to case (iii) above, we have to formulate

a different rule. '(3x)(/x)' and '(3.x) ('^/v)' are simul-

taneously satisfiable because '(3.t) (/v)' is true if and only if

(1) (fai yfa, V . . . v/O
is true, and '(3.x) (-^/x)' is true if and only if

(2) i^fa, V ^fa, V ... V ^fa,)

is true.

Now (1) would be true if only one of the '/oi' to '/a„'

were true. Suppose then that '/aj' is true and the rest

false. Then ''^foz' would be true and therefore (2)

would be true, since (2) hke (1) is true if at least one of the

components of the disjunction is true. Thus (1) and (2)

are clearly satisfiable simultaneously, and therefore

'(3x)(A)' and'(3-v)(-'A)'

are so as well. We therefore have

:

III. ' (3x) A ' and * (ix) B ' are simultaneously satisfiable if

and only if they are individually satisfiable.

12. The Classical Syllogism. The following three

formulae are not simultaneously satisfiable

:

(1) (x) (fx D gx), (x) (gx D hx), (3.V) C/x.- hx).

* The rules are written thus for conciseness though strictly we should
add: "when the individual variables are replaced by individual con-

stants distinctfrom any already appearing in 'A ' and'B'". Seepage 117.
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Applying the test developed in Section 1 1, we knt)w that (1)

will be simultaneously satisfiable only if:

(2) {fa D ga) . (ga D ha) . (fa . ^ ha)

is consistent by truth-tables, that is, if the main column of

the truth-table contains at least one 1 . It is easy, however,

to see that (2) is truth-functionally contradictory, that is,

its truth-table contains only O's in its main column.

The same result can be obtained intuitively by considering

an interpretation of (1). Suppose '/' means "centaur",
'g' means "vindictive", and '/z' means "bold". Then:

(3) (x) (fx D ^.v) means (3^)" All centaurs are vindictive".

(4) (x) (gxDhx) means (4a) "All vindictive creatures

are bold".

(5) (3x) (fx.'-^ hx) means (5(7) "Some centaurs are not

bold".

Clearly, if (3a) and (4a) are true, then (5a) must be false.

The set of formulae (1) is called Ladd-Franklui's incon-

sistent triad* and it is the formal basis which validates

most of the classical syllogisms. Since the three formulae

are not simultaneously satisfiable, it is clear that given

the truth of any two of them, we can infer the falsity of the

third. Or given any two as premisses, we can infer the

negation of the third. Thus

:

(6) ((x)(fxDgx).(x)(gxDhx)).

Therefore (x) (fx D hx)
;

(l)((x)(fxOgx).(3x)(fx.r^hx)).

Therefore (3x) (gx .
'^ hx)

;

(8) ((x)(gxDhx).(3x)(fx.r^hx)).

Therefore (3x) (fx .~ gx) ;

are all valid forms of inference.

* After Mrs Christine Ladd-Franklin (1847-1930), an American
logician.
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The inferences mentioned in Section 1 all fall under one

of the forms (6) to (8). Thus in Example (1) we may put

'/' for "ordinary members of the society", '^' for "pay an

annual subscription of one guinea", and '/z' for "receive

the publications of the society without further charge".

In Example (2) we put '/' for "missionaries", 'g' for

"has rigid views on morals", and '/z' for "does not

make a good anthropologist". In (3) we put '/' for

"undergraduates", 'g' for "have the right to use the

university library", and '/z' for "seriously interested in

scholarship".

There are a few syllogisms which are not covered by the

Ladd-Franklin formula. These are syllogisms in which a

particular conclusion is drawn from universal premisses.

For example:

All centaurs are vindictive.

All centaurs are bold.

Therefore, some vindictive creatures are bold.

Putting '/' for "centaurs", 'g' for "vindictive", and
'/?' for "bold", we get:

(9) ((x) (A D gx) . {x) (fx D hx)). Therefore {3x) (gx . hx).

By negating the conclusion of (9) we get the triad

:

(10) (x) (fx D gx), (x) (fx D hx), (x) (gx D - hx).

This is not the same as (1) and, moreover, it is consistent,

for:

(1 1) (fa D ga) . (fa => ha) . (ga D ~ ha)

is true if we assign a meaning to 'a' such that '/a', 'ga\ and

'ha' are all false. This means that the inference is invalid

if (and only if) there are no centaurs. Consequently, in

order to render it valid, we must introduce an additional

premiss asserting the existence of centaurs, getting [in

place of (9)]

:
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(1 2) ((3A-) (/x) . (x) ifx D gx) . (a) {fx D /7X)).

Therefore (3a:) (gA'./zA:);

and [in place of (10)]

(13) (3A-) (/A-), (a) {fx D gx), (a:) (/a D /za), (a) (gA D ~/?a).

The four formulae (13) are not simultaneously satisfiable,

since the truth-functional expression:

{U) fa. {fa D ga)
. {fa D ha) . (^fl D ~ ha)

is contradictory,* unlike (1 1). Consequently the inference

(1 2) is a valid one. By taking any three of the four formulae

in (13) as premisses, we can generate various forms of

inference including some not recognised in the traditional

scheme.

(A fuller treatment of the traditional approach to

syllogistic inference is given in the Appendix.)

BIBLIOGRAPHICAL NOTE

Chapter V

Elementary accounts of the restricted predicate calculus fall

into two classes, the descriptive and the more rigorous. Good
descriptive accounts will be found in Ambrose and Lazerowitz (1)

and Strawson (30). More rigorous elementary accounts are

given in Cooley (7) and Reichenbach (25). Eaton (10) gives a

useful descriptive introduction to the symbolism of Principia

Mathematica (33). The most thorough treatment will be found

in Hilbert and Ackermann (12).

* The student should check this for himself by constructing the

appropriate truth-table.



chapteh VI

FURTHER DEVELOPMENTS

1. Extensions of the Class of Formulae. In Chapter V,

we have considered in detail only a rather restricted class of

formulae of the Predicate (or Functional) Calculus. Let

us first state precisely the contents of this class

:

(i) Atomic formulae, consisting of a single predicate

constant followed by an individual variable. For example,

'/jc', 'gx\ 'fy\ and the like.

(ii) Truth functions of atomic formulae, all of which

contain the same individual variable. For example,

'fx Zigx', 'gy V hy\ and so on.

(iii) Closed formulae, which are the result of putting

'(3x)' or '(.x)', '(3>0', '{y)\ and the like in front of

formulae of types (i) and (ii). For example, '(3x) {fx)\

'{y){gy^hyy, and similar expressions. The variable

occurring in the quantifier must here be the same as the

variable occurring in the succeeding formula.

(iv) Truth functions of formulae of type (iii).

We consider especially the question of the satisfiability of

these formulae and the simultaneous satisfiability of two

or more of them taken together.

The restriction in (ii) will probably strike the reader as

somewhat arbitrary. Why should we not allow formulae

like '/jc D gy' or even '/x "Dfy'l What would be the con-

sequence of allowing such expressions? Let us investigate

this possibility.

Consider the formula

:

[\) fx^gy.
126
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Since it is an open formula, it cannot be said to be true or

false. We therefore apply the quantifier '(3x)\ getting:

(2) (3x)(fxDgy).

But this formula contains a free variable 'y\ so we shall

have to apply another quantifier, as for instance '(3j)';

we then have:

(3) (3y)i3x){fxOgy).

Now what meaning can we assign to (3)? We have some

choice here but the most obvious meaning is

:

(4) There is something x, and there is something y
(which may or may not be the same thing), such that if x

has the property/, then y has the property g.

Notice that this is quite different from the meaning of:

(5) i3x)(fxDgx).

(5) says only that there is at least one object which either

does not have the property '/' or does have the property

'g'. (This proposition is so rarely false and so trivial as

hardly ever to be worth asserting.)

A clearer example is perhaps the difference between

:

(6) (3v)(3A-)(A-.g>')and

(l)(3x)(fx.gx).

(6) says, under suitable interpretation, that, for example,

there exists something red and something round, whereas

(7) says under the same interpretation, that there exists

something which is both red and round. And this is

obviously quite a different matter.

Evidently we can construct formulae with triple and

quadruple quantifiers on this model. Two questions then

arise

:

(a) What are the relations between these new formulae

and the old ones?
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and, in particular,

(b) Do these new formulae constitute a genuine extension

of our calculus?

We shall proceed first to say something about these two

questions.

2. Formulae with more than one Quantifier. Let us

consider the second question first. We must first express

it more exactly

:

{b') Do some or all of the new formulae have meanings

which cannot be expressed by means of the old formulae?

For this purpose, we shall say that two formulae, 'P'

and 'Q\ have the same meaning if whatever interpretation

satisfies 'P' satisfies 'Q\ and conversely. The answer to

question {b') is in fact: No. The new formulae do not

constitute a genuine extension over the old ones. We
cannot give a formal proof of this here but a few examples

will make clear the relationship between the new formulae

and the old. Consider the formulae:

(1) {2x).{3y^U'x-gy)-

(2) (2x){fy).{2x){gx).

(3) {3x){fx.gx).

A little reflection will convince the reader that, although

(1) and (3) do not have the same meaning, (1) and (2) do

have the same meaning. Likewise,

(4) (3.v)(3;')(AVgv)

means the same as

:

(5) {3x){fx)M{3x){gx).

For in (4) the bound variables '.\' and 'j' may or may not

refer to the same individuals. And the same is true of the

two occurrence's of 'a' in the quantifiers o'[ (5).
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Consequently, since 'P D g' is the same as '~ P V g',

(6) (3x)(3y)(fxz>gy)

is the same as

:

(7) {3x)i3y)(^fxygy)

which, in turn, is the same as

:

(8) (3x)(^fx)\t(3y)igy).

Thus these foimulae with two quantified variables may

be resolved into truth-functional combinations of formulae

with only one variable quantified. These facts suggest

(but do not, of course, prove) what actually is the case,

namely, that formulae with several quantifications can

always be transformed into equivalent formulae which are

truth-functions of formulae with single quantifications.

Because of this fact, the introduction of such formulae is

of little theoretical interest and we shall not discuss it

further here. The extension is, of course, of considerable

practical interest inasmuch as it enables us to formaUse

arguments of greater complexity. But the method of

deciding the validity of such arguments is no different from

that already discussed in Chapter V.*

3. Two-termed Predicates. An extension of much

greater theoretical interest is the introduction of two-

termed predicates into our system. Certain singular pro-

positions contain two or more proper names. For

example

:

(1) John is taller than James.

(2) Reading is between Oxford and London.

* In view of the discussion in Section 3 below, it will be well to

emphasise that what we have been saying here relates only to expres-

sions containing one-term predicates (or one-place predicates) like

"blue" or "hot". It is not applicable to expressions containing the

more complex predicates introduced in Section 3.
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These propositions assert the existence of a relation

between two or more individual objects. They could be

expressed symbolically by:

(3) fab.

(4) fabc.

In (3) the letter '/' can be interpreted to mean the relation

of "being taller than"; and in (4) the letter '/' can be

interpreted as "being between". "Taller than" is said to

be a two-termed or dyadic relation; and "between" is

three-termed or triadic. And it is possible to think of

tetradic relations or of relations of even higher orders but

mention of these relations does not often occur in ordinary

discourse.

Using variables and quantifiers, we can obtain formulae

like:

(5) (3x) (3j) ifxy).

(6) (3aO {y) ifxy).

If 7' is interpreted to mean "taller than", then (5) expresses

the true proposition

:

(7) There exists an x and a y such that .x is taller than y.

And (6) expresses, under the same interpretation, the false

proposition

:

(8) There is an x such that, for all values of v, x is taller

than y.

This is false because no object can be taller than itself.

The introduction of dyadic and other relations into logic

marks an advance of the greatest importance. It may
perhaps appear at first sight that they are just ordinary

predicates like "blue" or "hot" or any other predicate of

the type dealt with in the previous chapter, the only

difference between them being that "blue" is a one-place

predicate qualifying only one thing at each of its occur-

rences, whereas "between", for example, is a three-place
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predicate requiring three individuals to qualify each time

it is instantiated. This is correct; but the important point

is that the transition from one-place predicates to predicates

of two or more places introduces considerable complexities

into logic.

We have seen that the essential problem in the logic of

predicates is the problem of the satisfiability of some given

class of quantified formulae. Up to the present, we have

treated this question of satisfiability in an intuitive way;

that is to say, we have contented ourselves with the fact

that a formula is satisfiable if we can assign meanings to

the predicate terms in it so that by our interpretation we

obtain a true proposition. We then developed a technique,

applicable to a restricted class of formulae, namely, those

formulae which we discussed in Chapter V, which would

enable us to say whether or not a particular formula is

satisfiable and whether or not a particular finite set of

formulae are simultaneously satisfiable.

For reasons which will become clear later, we cannot

extend this intuitive approach to formulae that contain

two-termed predicates. It is essential that we should now
undertake a careful analysis of the notion of satisfiability

and give a. precise and rigorous definition of what we propose

to mean by saying that a formula is satisfiable. This

analytic approach will not invalidate anything which we

have said so far. But it will issue in a deeper understanding

of the notion of satisfiability which is, indeed, a keystone

of logic.

4. Satisfiability: Finite Domains. Suppose that we have

a little group of, say, three different objects; and suppose

we confine our attention to this little group and always

interpret our formulae in terms of these objects, their

properties and their relations. We call the objects A, B,

and C. Such a set of objects, used for the purposes of
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interpreting formulae, is called a domain or universe of

discourse*

Now consider a predicate of ordinary discourse like

"red". This predicate will divide our three objects into

two classes, according as they are or are not red. In this

sense, "red" defines a class in the domain ABC, namely,

the class of red objects in the domain.

Now consider the various possible classes in the domain

ABC. There are exactly eight, namely

:

(a) The null classf (the class consisting of no objects

at all).

(b) The three classes whose only members are A, B,

and C respectively.

(c) The three classes whose only members are A and B,

A and C, B and C respectively.

(d) The class containing A, B, and C, that is the class

co-extensive with the domain.

These classes can be written as follows: (I) [0]. (2) [A],

(3) [B], (4) [C], (5) [AB], (6) [AC], (7) [BC], (8) [ABCJ.j

Now it is clear that, no matter what predicates we use to

define a class in this domain, it must always define one or

other of these eight classes. Moreover, a large number of

different predicates will define the same class, and in

ordinary language these different predicates would none-

theless have different meanings. For example, A ma>

be the only red object in the domain and also the only

round object. Thus, "red" and "round" define the same

class in this domain. Nevertheless, "red" and "round"

have quite different meanings.

* For a further discussion of this concept, see Appendix.

t For a more general discussion of this concept and of the notion
of class, see Appendix.

X Notice the use of square brackets here; [\C] means "the class

whose oT)]y members are A and C", and so on.
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Suppose we are given some formula involving one-termed

predicates, for example, '(3x)(fxy, and try to interpret it

in the domain ABC. In a sense, we can give any number

of different meanings to '/', but these meanings v^^ill all

define one or other of the eight classes mentioned. Con-

sequently, so far as satisfiability in this domain is con-

cerned, only eight effectively different interpretations of

'/' can be given.

We can now see that the question of the satisfiability of

any formula (containing only one-term predicates) in the

domain ABC is easy to determine. There is no need to

hunt through innumerable different meanings for the

various predicate terms. All we need to consider are the

eight effectively different meanings, namely, the eight

different possible assignments of a given predicate to the

classes in the domain ABC. For example, ' (3x) {fx .
r^ gx)

'

is satisfiable in this domain, because if '/' is associated with

[A] and 'g' with [B]* there will be something, namely A,

which has the property '/' and not the property 'g\

5. Finite Domains (continued). We took as our example

a domain containing just three objects and explained what

is meant by saying that a formula is satisfiable in such a

domain. But it is clear that we could have considered a

domain containing one or two or twenty-six or any other

finite number of objects. (Later we shall see that even

infinite domains play their part.) And we can even conceive

of an empty domain containing no objects whatever.

Two questions then arise : (a) Are there formulae which

are satisfiable in some domains but not in others? (b) Are

there formulae which are not satisfiable in any domain?

To answer these questions we have first to state explicitly

what we mean by "different domains". Let us first do this.

* We say that '/' is associated with [A], the class whose only
member is A, il" we have assigned a meaning, e.g. "red" to V'. such
that A is the only object in the domain with tliis property.
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Definition 1.—By different domains, we shall mean
domains containing different numbers of objects. In other

words, domains containing the same number of objects are

identical for logical purposes, no matter whether the

objects in the domains are different or not.

This definition underlies what is meant by saying that

logic is a matter of form and not of subject-matter or

content. (See Chapter I.)

Question {a) can be answered easily enough. The formula

'(3.v)(/a)' is not satisfiable in the empty domain. Indeed,

no existential proposition can be satisfied in the empty

domain, for obvious reasons. Again, '{3x){2y){fx.^ fy^'

is not satisfiable in a domain which contains less than two

distinct objects. In general, we have:

(1) For any finite number n, there are formulae which

are not satisfiable in any domain containing less than n

objects.

(2) If a formula is satisfiable in a domain containing n

objects, then it will be satisfiable in every domain con-

taining more than n objects.

These facts suggest the following definition of "satisfi-

ability in general":

Definition 2.—A formula is satisfiable (in general) if

and only if there exists a finite domain in which it is

satisfiable.

Likewise:

Definition 3.—Two or more formulae are simultaneous!}'

satisfiable for consistent) if and only if there exists a finite

domain in which they are simultaneously satisfiable.

The reader will perhaps have noticed that these definitions.

taken as they stand, are not completely rigorous. This is

because, although we have assigned a meaning to the
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phrase "not satisfiable in an empty domain", we have

not defined what we mean by saying that a formula is

satisfiable in the empty domain. We can give this phrase a

meaning but we shall, in fact, avoid this issue altogether

by amending definitions (2) and (3) as follows

:

Definition 2a.—A formula is satisfiable (in general) if

and only if there exists a finite non-empty domain in which

it is satisfiable.

Definition 3a.—Two or more formulae are simultaneously

satisfiable (or consistent) if and only if there exists a finite

non-empty domain in which they are simultaneously

satisfiable.

6. Two-termed Predicates: Infinite Domains. The

definitions that we have given for satisfiability and con-

sistency work quite well for formulae containing one-term

predicates only, that is, for all the formulae discussed in

Chapter V. Indeed, our decision method there is based on

an intuitive use of just the notions which we have now
more rigorously expressed. The question now arises:

Are these definitions adequate also for formulae containing

two-termed predicates, for example '(x) {fxyY and the

like? The answer to this is that they are not adequate.

And the fact that they are not adequate is one of the most

important facts of logic.

First consider the formula:

(1) {^)(.y){fxy^r^fyx).

This formula is satisfiable intuitively. For suppose '/' to

mean "greater than". Then (1) will mean:

(2) Whatever x and y may be, if x is greater than y,

then y is not greater than x.

Clearly (1) is satisfiable in a finite domain, for example,

the domain containing only the integers 1 and 2. [Of
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course, a multitude of other meanings besides "greater

than" will satisfy (1). For example, "father of", "to the

left of", "later than".]

Now consider:

(3) (X) (y) (_-) (fxy) D (fyz lifxz).

(3) is satisfied by "equal to", "greater than", but not by

"greater by one than".

(4) (>•) {3x) (fxy).

(4) is satisfied by "equal to".

Now let us ask ourselves if (1), (3), and (4) are consistent,

that is, simultaneously satisfiable. Clearly, the validity

of many forms of inference depends on the answer to this

question

.

Suppose Dn is a domain of n objects, a^, a^, . . . a„, and

i? is a relation which satisfies (1), that is, if a^ has the

relation R to fi„, then it is 770/ the case that fl„ has the

relation R to a^. We may write this

:

if (a^^Ran), then not-(a„i?fl,„).

Suppose that R also satisfies (3), that is

:

if (o^jiRan) and {a^Ra^, then {amROj),

and, consequently, it is not the case that (OjRam). Now
choose any object in the domain, say, a^. If (4) is to be

satisfied, there must be some object, say, ag, such that

{a^Ra^ and similarly {a^Ra^^ and so on. We can then

form a chain:

{a-i^Ra^ .{a^Ra^ .{a^Ra^ (a^-iRa^).

Any such chain must terminate since it cannot contain

more than the n objects in the domain. But by (3), if a,

precedes a^ in the chain, then it is not the case that

{OkRa,). Hence there must be some object in the domain

which contradicts (4).

Nevertheless, the three formulae are clearly satisfiable

in an intuitive sense. For let the domain be the domain of
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positive integers and let '/' mean "greater than"; then

(1) and (3) are satisfied and (4) is also satisfied, since for

any number k, there is a number m such that m is greater

than k. This is so because the sequence of positive integers

does not terminate, which is to say that it is an infinite

domain.

We saw in Section 4 that some finite domains may be

bigger than {i.e. contain more objects than) others and that

this is the difference between domains which is important

for logic. We agreed to say that two domains are abstractly

or logically identical if they contain the same number of

objects. A question naturally arises: Are some infinite

domains in some sense bigger than others or are all infinite

domains abstractly identical? In other words, are there

for the purposes of logic one or many abstractly distinct

infinite domains? A complete answer to this question

does not come within the scope of this book. For our

present purpose, we shall assume for simplicity that there

is only one infinite domain. This is not in fact the case

but for the limited purposes of the present discussion it

will be less confusing if we talk simply of "the infinite

domain". The following rules are not invahdated by the

fact that this assumption is incorrect. We can now,

therefore, set out some rules for satisfiability as follows

:

Rule 1.—If a formula is satisfiable in some finite domain,

then it is satisfiable in the infinite domain.

Rule 2.—If a formula containing one-term predicates

only is satisfiable at all, then it is satisfiable in somQ finite

domain.

Rule 3.—There exist formulae containing two-term

predicates which are satisfiable only in the infinite domain.

7. Logical Truth. In Chapter II we divided the formulae

of the propositional calculus into two classes, tautologies
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and those formulae which are not tautologies. A tautology

is said to be a logically true formula in this sense that it

guarantees a certain form of inference. A question arises

:

Can we specify a similar class of formulae for the predicate

calculus? We can do this by making use of the notion of

satisfiability.

We explained in the two previous sections what was meant

by saying that a formula is satisfiable in a domain Z)„

containing a definite number n of objects. We can there-

fore divide our formulae into two classes

:

(A) Formulae which are satisfiable in /)„.

(B) Formulae which are not satisfiable in Z)„.

Now let us consider the following class

:

(C) Formulae whose negations are members of (B).

(C) will be said to form the class of formulae which are

valid in Dn. It is clear that no matter what interpretation

we give to such formulae (within the limits of Z)„), they

will always express true propositions.

If we are assumed to know beforehand the number of

objects in our domain, the formulae valid in that domain

will guarantee various forms of inference in just the same

way as tautologies. If, however, as is usually the case, the

number of objects in the domain is unknown to us, then

clearly, the assumption that the domain contains any

particular number of objects may lead to fallacious

inferences. For this reason, we cannot be content with

formulae which are valid in some domains and not in others.

We require our formulae to be valid in every domain with

perhaps a certain exception.

The exception is that we need not require our formulae

to be valid in the empty domain. This is just a matter of

convenience. For example, we are permitted, if we make

this exception, to treat such a formula as '(3.x) {fx V '^fxY
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as valid. It would be most inconvenient if, in our inferences,

we were constantly obliged to insert an explicit premiss to

the effect that something exists in the universe of discourse.

It is much more convenient to take the matter for granted.

The reader may wonder if we now possess a complete

specification of logical truth. Could we perhaps extend

the class of formulae in some way and then construct for

this extended class of formulae some standard of logical

truth which is stronger than the notion of validity dis-

cussed above in the way that this notion is stronger than

the notion of tautology? The answer to this question is

fraught with great difficulties and we cannot discuss it in

any detail here. We can indeed extend our class of formulae,

getting the so-called Extended Predicate Calculus. But this

calculus is not more powerful than our Restricted Predicate

Calculus in the way that the latter is more powerful than

the Propositional Calculus.

8. Decision Procedures. By a decision procedure, we

understand some method of deciding whether or not any

arbitrarily given formula of a certain class is logically true.

We have such procedures for the formulae of the Proposi-

tional Calculus, namely, the method of truth-tables or the

method of conjunctive normal forms. The features of

these methods which make them decision procedures are

:

(i) They are applicable to any formula of the Pro-

positional Calculus.

(ii) They always arrive at an answer (either that the

formula is a tautology or that it is not a tautology) after

a limited amount of calculation.

We also have a decision procedure for the calculus of

one-termed predicates. In Chapter V we explained a

method of deciding whether or not any given formula of a

certain kind is satisfiable. And we have seen that a formula
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is valid if and only if its negation is unsatisfiable . Here,

however, our decision procedure rests on two assumptions :

(1) That any formula '^' of the whole calculus of one-

termed predicates can be associated with some formula

'J?' of the restricted class of Chapter V such that M' is

valid if and only if '5' is valid.

(2) If a formula of the calculus of one-termed predicates

is valid in every (non-empty) finite domain, it is also valid

in the infinite domain.

As it happens, both these assumptions are true but the

reader should appreciate that we have not in fact verified

them. (Their proofs lie beyond the scope of this book.)

Consequently, our proof that there is such a procedure

remains incomplete.

If we add to our formulae those containing two-, three-,

or, in general, 77-termed predicates, we get the so-called

Restricted Predicate Calculus. Have we a decision pro-

cedure for this calculus? The answer is that we do not

have such a procedure and, moreover, are never likely to

have. The reason for this is not easy to explain without

going into considerable technical detail. It is, however,

closely associated with the fact that assumption (2) aboNe

does not hold for the Restricted Predicate Calculus as a

whole. A few general remarks may help the reader.

A decision procedure is essentially a mechanical process.

If we can give such a procedure, we can always devise, in

theory at least, a machine which will carry it out without

human intervention. Now the most general concept of

such a calculating machine which is known to us was put

forward by Dr A. M. Turing in 1936. All machines which

fall under this concept are called Turing machines. What

we know for certain is that //a decision procedure for the

Restricted Predicate Calculus is ever devised, then the

corresponding machine will not be a Turing machine. We
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really have not the smallest concept of what a calculating

machine would be like if it was not a Turing machine nor

have we even the faintest idea of how such a machine would

work.

9. Axiom Systems. By an axiom system wc mean a

method for deriving logically true formulae. Such a system

usually consists of:

(1) A finite number of axioms.

(2) A finite number of rules of inference.

We have given one example of an axiom system, namely,

a system for deriving all the logically true formulae of the

Propositional Calculus. It is clear that ideally the following

two conditions must be satisfied

:

(i) Every logically true formula (of the desired class)

must be derivable.

(ii) No formula that is not logically true can be derivable.

We proved that our axiom system for the Propositional

Calculus met these two conditions.

We may naturally ask : Can such a complete and con-

sistent axiom system be devised for the Restricted Predicate

Calculus? The answer is that an axiom system for this

purpose can be devised without great difficulty. In fact,

axiom systems for the Restricted Predicate Calculus are

sometimes given, though without the required proofs of

completeness and consistency, in elementary books. We
have not given one here only because the considerations

leading to its construction and to the proofs of its con-

sistency and completeness, while not especially difficult,

do require a perfect understanding of the basic notions of

validity and satisfiability. Once he is sure of these, the

reader is in a position to consult the necessary sources.

(See the bibliographical note at the end of the chapter.)
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Axiom systems are closely related to decision procedures.

In fact, a complete and consistent axiom system is one-half

of a decision procedure, for if a formula is logically true,

it can tell us that this is the case. It is obvious, however,

that if a formula is not logically true (and therefore not in

the hst of derivable formulae) no extension of this list will

inform us of the fact. In view of the close relation between

axiom systems and decision procedures, it is somewhat

surprising that the first is possible for the Restricted

Predicate Calculus, while the second, it seems, is not.

What it amounts to is that we have a way of listing all the

vahd formulae but no way of listing all the invahd ones.

No matter what method we choose for making a list of all

the invahd formulae of this calculus, either it leaves out

some or it will include in the list some which are vahd.

BIBLIOGRAPHICAL NOTE

Chapter VI

The best elementary discussions of some of the problems raised

in this chapter will be found in Quine (24). Reichenbach (25)

gives an excellent account of the techniques of the predicate

calculus. The standard text is again Hilbert and Ackermann
(12). For a discussion of Turing machines, see Kleene (18).

General
Kleene (18) is a very thorough and rigorous survey of the field

of symbolic logic in its relation to mathematics. It is not an

easy book and the student should not attempt it until he has

mastered Hilbert and Ackermann (12). Good general works on

symbolic logic beyond the merely elementary level are Copi (34).

Fitch (11), Leblanc (35), Lewis and Langford (20). Quine (23),

and Reichenbach (25). Strawson (30) has an excellent discussion

of the relation between logic and ordinary language. Rosen-

bloom (26) is a concise and systematic survey which will be useful

to the student with some knowledge and appreciation of mathe-

matical techniques. The best elementary book is Ambrose and

Lazerowitz (1). Students who read French will find J. Dopp:
Lecom de Logique Fonnelle, a first class introduction.
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1. The Syllogism and the Algebra of Classes. The

theory of the syllogism comprises almost the whole of

the deductive logic of the traditional textbooks. It would

not therefore be proper, even in so brief an outhne of

modem logic, to pass the syllogism by with only the

cursory reference already given.* It is true that the types

of argument embodied in the various forms of the syllogism

can be adequately dealt with by the symbolism and pro-

cedures of the restricted predicate calculus which have

been outlined in Chapters V and VI. Thus, the parts of

logic which have been discussed in this book include the

logic of the syllogism. But the theory of the syllogism can

be conveniently related to another important branch of

logic, the algebra of classes, which has so far received only

a passing reference in Chapter I.

The following brief account of the " Aristotehan

"

syllogism is put in here for the sake of completeness and

for the benefit of those readers who are quite unacquainted

with the traditional logic. More detailed accounts will be

found in the books quoted at the end of the chapter. It

may be as well to mention, however, that the word

"Aristotelian", though usual in this context, is misleading.

Aristotle was, of course, the inventor of the syllogism

but his own treatment of it differs in several important

particulars from those given in the traditional textbooks.

(An authoritative account of these differences has recently

been given by Professor Lukasiewicz.)t

We shall understand by the term "syllogism" what the

textbooks of the traditional logic refer to as the categorical

* Section 12 of Chapter V.

t Aristotle's Syllogistic (Oxford, 1951).
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syllogism. (The so-called hypothetical and disjwictive

syllogisms are really truth-functional arguments which can

be dealt with by the methods of Chapters II and III.)

The following are instances of syllogisms

:

(1) All finches are grain eaters.

Some finches are migrants.

Therefore, some migrants are grain eaters.

(2) No acts of injustice are politically expedient.

Some emergency measures are acts of injustice.

Therefore, some emergency measures are not

politically expedient.

The reader will see that each of the examples given (like

the examples quoted at the beginning of Chapter V) con-

sist of three propositions, two premisses followed by a

conclusion which is stated as the logical consequence of

the conjunction of the two premisses. If we represent the

premisses by 'Pi' and 'Pg' and the conclusion by 'C, the

form of the argument is

:

(3) (Pi. P,) DC.

But this symbolism, as we have seen already, does not

make the logical point of the argument clear. (3) is not a

valid formula. The validity of arguments like (1) and

(2) rests on certain relations between the classes referred

to in the premisses and these relations are not brought

out by (3). In (2), for example, the classes are "acts

of injustice", "politically expedient acts", and "emergency

measures".

In the traditional syllogism, the terms standing for the

classes were given special names. The term occurring

twice in the premisses is called the middle term; the terms

which are subject and predicate of the conclusion are known
respectively as the minor term and the major term. Thus,

in (1), the middle term is "finches" and the minor and

major terms are "migrants" and "grain eaters" respectiveh

.
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In accordance with this terminology, the premiss containing

the minor term is known as the minor premiss and that

containing the major term is called the major premiss.

And it is conventional, though in no way relevant to the

validity of the argument, to put the major premiss before

the minor in setting out a syllogisni.

Further, the propositions used in an Aristotelian syllogism

are classified into four different kinds. Those propositions

Hke the major premisses of (1) and (2) above which say

something (positive or negative) about the whole of the

subject class are called universal propositions. Those

propositions, like the minor premiss and conclusions of

(1) and (2) which make an assertion about a part only of

the subject class are known as particular propositions.

Moreover, propositions may be classified further as

affirmative or negative according as they affirm or deny the

predicate of the subject. For example, the major premiss

of (2) and its conclusion are negative, while the minor

premiss is affirmative. We thus have four types of pro-

position (and only four) forming the basic units of classical

logic. They have been distinguished for convenience, since

early medieval times, by letters assigned to them as follows

:

universal affirmative: A
universal negative: E

particular affirmative: I

particular negative: O

A term in an Aristotelian syllogism is said to be

distributed if^ the proposition in which it occurs refers to the

whole of the class designated by the term. Otherwise, the

terai is undistributed. Consider the following propositons

:

(4) All athletes are energetic (A).

(5) No burglars are respecters of property rights (E).

(6) Some film stars are glamorous (1).
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(7) Some snakes are not poisonous (O).

It is clear that the universal propositions (A and E)

distribute their subject terms. If I say "All athletes are

energetic", I identify every member of the class of athletes

with some member of the class of energetic people. If

I say "no burglars are respecters of property rights",

I exclude every burglar from the class of respecters of

property rights. On the other hand, all particular proposi-

tions (I and O) have their subject terms undistributed. This

is clear because such propositions are of the form "Some
S is P" or "Some S is not P". We do not refer to all the

members of the class S.

All negative propositions, both universal (E) and par-

ticular (O) distribute their predicate terms. In asserting (5),

I not only exclude all burglars from the class of those who
respect property rights but I also exclude all the members

of the predicate class, "respecters of property rights",

from the class of burglars. Similarly, in asserting (7),

although I make an assertion about only part of the class

of snakes I exclude this class from the whole of the predicate

class "poisonous things".

We may summarise the position by saying that all

universal propositions distribute their subject terms and

all negative propositions distribute their predicate terms.

Thus we have:

A (universal affirmative) distributes subject only.

1 (particular affirmative) distributes neither subject nor

predicate.

E (universal negative) distributes both subject and

predicate.

O (particular negative) distributes the predicate only.

We are now in a position to state the rules which govern

the validity of the syllogism. They are as follows:

(i) The middle term must be distributed at least once.
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(ii) No term may be distributed in the conclusion which

was not distributed in its premiss,

(iii) No conclusion follows from two negative premisses,

(iv) (a) If one premiss is negative, the conclusion must be

negative.

(b) If the conclusion is negative, one premiss must be

negative.

These rules are usually treated as axioms of syllogistic

logic and a number of corollaries may be derived from them.

(For example, no conclusion follows from two particular

premisses.) They are not, however, independent axioms and

some ofthem can be shown to be consequences of the others.*

Let us now consider the question: How many different

types of valid syllogism are there? It is obvious that the

number of possibilities is considerable. In any syllogism,

there are four different types of proposition available as

major premiss (A, E, I, and O). Similarly, there are four

different possibilities for the minor premiss and the same

number for the conclusion. Thus, considering only the

types of propositions involved, there are (4 x 4 x 4) or

sixty-four possible kinds of syllogism. [These different

combinations of premisses and conclusion, for example,

All in (1) above or EIO in (2), are known as the moods

of the syllogism.]

But we have also to consider the possible ways of

arranging our major, minor, and middle terms. There aic

four possible arrangements. Representing the middle term

by M, the major term by P, and the minor by S we have:

I II 111 IV

MP PM MP PMSM SM MS MS
SP SP SP SP

Keynes: Formal Logic (Fourth Edition), pp. 291-4.
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These four possible arrangements are known as the

figures of the syllogism. It is clearly possible to express

any of the sixty-four possible moods of the syllogism in

any of the four figures, giving in all 256 possible different

types of syllogism. Fortunately, however, if we apply the

rules of the syllogism to these possibilities we find that

only twenty-four of them are valid. Of these five are the

so-called weakened moods in which a particular conclusion

is drawn from premisses which justify a universal. (For

example, AAT in Figure I instead of AAA.) Omitting

these as unimportant, we have nineteen valid moods as

follows:

Figure I Figure J

I

AAA (Barbara) EAE (Cesare)

EAE (Celarent) AEE (Camestres)

AIT (Darii) EIO (Festino)

EIO (Ferio) AOO (Baroco)

Figure III Figure IV

AAI (Darapti) AAI (Bramantip)

lAT (Disamis) AEE (Camenes)

All (Datisi) lAI (Dimaris)

EAO (Felapton) EAO (Fesapo)

OAO (Bocardo) EIO (Fresison)

EIO (Ferison)

The "proper names" of the individual moods, given in

brackets, are convenient traditional ways of referring to

the valid moods. Thus, "Darapti" means "AAI in

Figure 111", and so on. The names are taken from a

Latin mnemonic verse, the earliest version of which is found

in the works of a medieval logician, Peter of Spain, later

Pope John XXI.
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2. Classes and the Relationships between them, [n the

syllogism, as we have seen, we are concerned with clauses

of things. In (1) of the foregoing section, for example, the

syllogism concerns the classes "finches", "grain eaters",

and "migrants". The notion of class is one which is

basic to logic and, indeed, famihar from common-sense

discourse. We shall not, therefore, try to define it more

exactly than by saying that a class is any set, collection, or

aggregate whose members have some property in common.

This property is the defining property of the class. (The

reader will notice that this account of classes, which is

based on the usage of the word "class" in everyday

discourse, differs from that given in Chapter VI, Section 4.

There we regarded classes extensionally, that is, from the

point of view of the members of the class. Here we are

taking the more usual course of regarding a class inten-

sionally, that is, from the point of view of the property

common to all the members of the class. It should be

noticed that these two points of view are not inconsistent.

Both are legitimate and it is a matter of convenience which

one we adopt. Because we are here considering classes

from the intensional point of view, we shall not adopt the

same notation as that used in Chapter VI.)

In adopting this common-sense notion of class to logical

use, we shall find it convenient to extend it a little. In

ordinary language, a class is a group or collection of

things that have some property in common. It would not,

therefore, be usual to talk of a class with only one member

and still less usual to talk of a class with no members at

all. Yet these extensions of the meaning of the word

"class" are convenient and, indeed, necessary in logic.

The class of kings of England who have had six wives

has only one member, namely, Henry VIII. And the class

of kings of England who have been executed has only

one member, namely, Charles I. And it is important to
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notice that we cannot dispense with these unit-classes, as

they are called, by identifying the class with its only member.

For they are not identical. "Henry VIII died in 1547" is

a true statement. But the statement "the class of kings

of England who have had six wives died in 1547" is neither

true nor even false: it is meaningless. We shall require,

in addition to the concept of a unit-class, the concept of

the null class, or the class that has no members. The

following descriptive phrases may be said to characterise

the null class in that they describe nothing at all: "being

an even prime greater than two", "being a round square",

"being a mermaid", "being the king of Germany in 1950".

It is clear that instances of this kind may be multipUed

indefinitely. It should be noticed, however, that though

we can find an indefinitely large number of properties

which characterise the null class, we do not assume that

there is a separate null class corresponding to each of these

properties. We need not postulate, for example, a null

class of mermaids and another null class comprising the

even primes greater than two because this would introduce

unnecessary comphcations and redundancies. It can be

assumed that there is only one null class. And it can be

proved that no mistakes in logic follow from the thesis

that there is only one. The very notion of such a class may
seem at first sight to be artificial and unnecessary but it

will be seen as we proceed that it is in fact essential for the

systematic development of the calculus of classes.

The Complement Class and the Universe of Discourse—
We shall use itahc capital letters from the beginning of

the alphabet A, B, C, . . . io represent classes. Then A
stands, let us say, for the class of dogs. To such a class

we can obviously construct a complementary class, namely,

the class of all those things which are not dogs. Let us

represent this class by A'. Thus the extension of A is all
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the dogs in the universe and the extension of A' is all those

things which are not dogs. The question now arises:

what is to be included in A'l Things are diverse as cats,

fish, buttercups, prime numbers, the British navy, and

quadratic equations would qualify for membership, as,

indeed, would anything in the universe that is not a dog.

Now it is found that serious difficulties arise from admitting

into logic such diverse and catholic membership of classes.

We therefore restrict ourselves when we are talking of

classes to a given universe of discourse. This concept was

introduced into logic by De Morgan (1806-71). He explains

it in the following way:* "Let us take a pair of contrary

names, as man and not-man. It is plain that between them

they represent everything imaginable or real in the universe.

But the contraries! of common language usually embrace,

not the whole universe, but some one general idea. Thus

of men, Briton and alien are contraries : every man must

be one of the two, no man can be both. Not-Briton and

alien are identical names, and so are not-alien and Briton.

The same may be said of integer and fraction among

numbers, peer and commoner among subjects of the realm,

male and female among animals, and so on. In order to

express this, let us say that the whole idea under con-

sideration is the universe (meaning merely the whole of which

we are considering parts) and let names which have nothing

in common, but which between them contain the whole

idea under consideration, be called contraries in, or with

respect to, that universe. Thus the universe being mankind,

Briton and alien are contraries as are soldier and civilian,

male and female, etc. The universe being animal, man and

brute are contraries, etc."

* Formal Logic (edited Taylor), London, 1926, p. 42.

t Although De Morgan uses the word "contraries" here, it would
now be more usual to speak, in this context, of contradictories.
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We have therefore two classes, A and A\ which comprise

between them the whole of a given universe of discourse.

We may represent this universe and its constituent classes

diagrammatically in the following way:

Thus the class of animals, if we take this as our universe

of discourse, can be divided into two mutually exclusive

and collectively exhaustive classes, dogs and not-dogs.

Basic Class Relationships.—One of the fundamental facts

about classes is that, with the exception of the null class,

they all have members. The relation of a member to the

class of which it is a member is usually symbolised by the

Greek letter ' e '. Thus the form of sentences like

:

(1) Socrates is wise,

(2) Tray is a dog,

(3) Napoleon is dead,

can be symbolised, not only by using the symbolism of the

predicate calculus as:

(4) A,
but also by:

(5) X€A,
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where 'a' is, as before, au individual variable and '/<* is

a class variable. Thus we use ' e ' as a logical constant to

represent the relation of class membership.

A further basic relation is that of class inclusion. The

statement

:

(6) Socrates is mortal

is to be distinguished sharply, in virtue of its logical form,

from

:

(7) All men are mortal.

(6) states that a given individual is a member of a certain

class, while (7) states that a given class is included in

another class. (6) is symbolised by (5). But to represent

(7) in symbolic form, we must introduce another logical

constant ' C ', and write (7) as

:

(8)AC5.

The fundamental difference between the relations

symbolised by ' e' and ' C ' may be brought out as follows

:

' C ' represents a transitive relation, while ' e ' does not.

A transitive relation is a relation R such that if x has R to

y and y has R to z, then x has R to z. The relation "larger

than" is an instance. If a- > y and y > z, then x > z.

Obviously, "included in" is another instance. \i ACB
and BcC, then AcC. But the relation of " class member-

ship" is not transitive. If Jones is a member of the British

nation and the British nation is a member of the United

Nations Organisation, then it does not follow that Jones

is a member of UNO. For only nations, not individuals,

qualify as members of UNO.

Class Sum and Class Product.—Suppose that we take

as our universe of discourse the class of human beings

and select for attention two sub-classes, the class of blue-

eyed people and the class of black-haired people. Then we

have, within the universe of discourse which we have
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selected, four classes (and only four) which are mutually

exclusive and also collectively exhaustive of the whole

universe. They are:

(a) blue-eyed people who are black haired,

(b) blue-eyed people who are not black haired,

(c) black-haired people who are not blue eyed,

(d) people who are neither blue eyed nor black haired.

Let A be the class of blue-eyed persons and B the class of

black-haired persons. We then have, symboUsing (a) to

(d) above

:

(a) AB,

(b) AB',

(c) A'B.

(d) A'B'.

And we may represent our universe and its constituent

classes on a Venn diagram* thus

:

In this diagram, the overlap between the v4-circle and the

^-circle represents the class of people who are both blue

eyed and black haired. This class is called the logical

* This form of diagram was introduced by the Cambridge logician,

John Venn (1834-1923).
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product or the intersection of the two classes. On the other

hand, the two circles themselves represent the logical sum

or union of the two classes and form a further class, namely,

the class of people who are either blue eyed or black

haired (or both).

Symbolism, for the Class Calculus.^T\\t concepts so far

introduced will be symbolised thus:

(i) classes A, B, C, . . .

(ii) class complements A', B\ C , . . .

(iii) null class

(iv) universe of discourse 1

(v) class membership c

(vi) class inclusion C
(vii) logical product of two classes A x B, or, for

short, AB

(viii) logical sum of two classes A + B.

The reader will see that we may combine two or more

classes to make a further class by means of the appropriate

logical constants, just as in the propositional calculus we
may combine two or more propositions to make a further

proposition. Thus, to revert to the example taken above

:

(9) A'B +B'

stands for the class of people who are either both black

haired and not blue eyed or not black haired.

3. The Boolean Algebra of Classes. The development of

the notions outlined above into a formal calculus of classes

is largely the work of George Boole (1815-64). In a short

book entitled The Mathematical Analysis ofLogic, published

in 1847, he outlined the system in a substantially complete

form.
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The basic ideas of the system are

:

(a) the concept of class

;

(b) the concept of the complement or negation of a class

;

(c) the unique null class

;

(d) the logical product of two classes

;

(e) identity between classes.

The symbolism for (a) to (d) has been given above.

(e) is symbolised by:

(ix) A= B.

To say that two classes A and B are identical is to say that

every member of /4 is a member of B and vice versa. On
this basis we may define the following equivalences

:

(i) 1 eq. O'.Def. (In other words, the universe of dis-

course is the complement of the null class.)

(ii) A -{-B eq. (^'5')'.Def.

(iii) AczBeq. AB' = O.Def.

The following laws hold for all classes in the system

:

1. (a) AA = A.

(b) A + A = A.

2. AG A.

3. If ACB and Bd A, then A = B.

4. K AcBandBd C, then A d C.

5. (a) AB = BA.

(b) A + B = B + A.

These are the commutative laws for addition and

multiplication.

6. (a) A (BC) = (AB) C.

(b) A 4- (B -f C) = (A +B) + a
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These are the associative laws for logical multiplication

and addition.

7. (a) A (B + C) ^ AB + AC.

(b) A -^ BC =^ (A -\- B) (A ^ C).

These are the distributive laws.

8. OcAd 1.

9. (a) 0^ - 0.

{})) \A = A.

9 (a) states the obvious truth that there are no common
members to any class and the null class. 9 (b) states the

equally obvious truth that the members common to any

class and the universe of discourse are the members of the

first class.

10. (a) + A = A.

(b) l+A=^\.

11. (a) AA' = 0.

(b) A + A' = L

This law states that (a) there are no members common to

a class and its complement and (b) that the logical sum of

any class and its complement exhaust the whole universe

of discourse.

12. (a) (AB)' = A' +5'.

(b) (A + B)' = A'B'.

These are De Morgan's laws of duality.

13. {A'y = A.

This is the law of involution or double negation.

These laws have been stated without proof and, indeed,

in most cases, they will seem too obvious to need proof.

But they can, of course, be set out systematically as an
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axiomatic system as was done in Chapter IV in the case

of the prepositional calculus.

It will probably have been noticed that some of these

laws have an obvious similarity to certain laws of the calculus

of propositions. (For example, 5, 6, 7, 12, and 13). The

analogy is, in fact, a very close one as the calculus of

propositions is just one interpretation of Boolean

algebra. (The reader should try to trace for himself the

correspondences between the terminology of the two

systems.)

4. The Boolean Algebra of Classes and the Syllogism.

The algebra of classes may be used to solve problems

involving class relationships of considerable complexity

though these applications are beyond the scope of this short

treatment. (For further reading on this point, see the

bibliography at the end of the section.) It may, however,

be useful to see how it can be applied to solve the simple

problems of class relationships presented by the classical

syllogism.

In order to use the algebra of classes for the solution of

logical problems, we have to apply the laws set out above

in the manipulation and development of class expressions.

An important type of manipulation is the development of a

class expression in canonical or normal form. It will be

remembered that in the calculus of propositions the

expression of a truth-function in a conjunctive normal form

constituted a decision procedure for the calculus. An
analogous procedure for the class calculus is to express a

class formula as a sum of products (that is, in a disjunctive

normal form) such that each product which is a member of

the sum contains all the class symbols involved in the

expression, either negated or unnegated. Let us take for

example a Boolean class expression F, say

:

(1) F={{A'B) -\C)\
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We have to express this as a sum of products containing

all the class symbols A, B, and C, either negated or

unnegated, thus:

(2) F = ABC + AB'C + A'B'C.

The transformation from (1) to (2) is effected by the

successive application of laws set out in Section 3 above,

in particular (1), (7), (9), (11), and (12).

F^{(A'B) + Cy
= (A'Byc by (12).

-(^+5')C by (12).

^{AC+B'Q by (7).

= 1 (AC) + 1 (B'C) by (9).

^={B+B')AC + (A +A')B'C by (11).

= ABC + AB'C + AB'C + A'B'C by (7).

And, finally, dropping the duplicate ABC by (1) we have:

ABC + AB'C + A'B'C.

It will be seen that, in these expansions, products which

are repeated, as AB'C above, may be dropped by (1) and

products which contain both a class symbol and its negation,

as for example AA'B'C, are equivalent to and may be

dropped by (10).

The propositional forms of the classical logic may be

translated into the notation of class algebra as follows

:

All S is P : SP' = 0.

No S is P : SP = 0.

Some S is P : SP 4= 0.

Some S is not P : SP' 4= 0.

Thus, for example, " all men are mortal" becomes "the

class consisting of the things which are both men and

not-mortal is empty ". And " some financiers are dishonest

"
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becomes "the class of things which are both financiers and

dishonest is not empty".

Let us now consider a syllogism, say, Cesare in Figure 11.

P e M No Christians are vice traffickers.

S a M All dope peddlers are vice traffickers.

S e P No dope peddlers are Christians.

This may be translated into the notation of the class

calculus thus:

PM =
SM' -0
SP -

Expanding the premisses and conclusion, we get :*

SMP + S'MP =

SM'P + SM'P' =

SMP + SM'P -

Combining the premisses we have:

SMP + S'MP 4- SM'P + SM'P' = 0.

And since the sum of these four classes is zero, the sum of

any two of them is also zero, and in particular

SMP + SM'P =

which is the conclusion.

Let us now look at a syllogism with a particular premiss

and, in consequence, a particular conclusion. The following

is an instance of Dimaris in Figure IV:

P i M Some ratepayers are voters.

M a S All voters are citizens.

S i P Some citizens are ratepayers.

Notice that by (5) of Section 3, the commutative law, the order in

which we write the terms in a logical product, is immaterial.
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Translating this into the terminology of the algebra of

classes, we have

:

PM +

MS' =

SP +

Expanding the premisses and conclusion into normal form,

we get

:

SMP + S'MP +

S'MP + S'MP' =

SMP + SM'P #=

Now we know from the minor premiss that S'MP = 0.

Thus the major premiss is SMP +0+0. Therefore, the

class SMP must have members; that is SP 4= 0. And
this is what the conclusion states. (Notice that from

SMP =# 0, we may deduce that SP =# 0, but not conversely.

For SP 4= would be true if SMP = and SM'P 4= 0.)

There are four of the syllogistic moods which are valid in

the traditional logic but which cannot be proved to be

valid by the algebra of classes. These are the syllogisms

in which a particular conclusion is drawn from two universal

premisses. The moods are Darapti and Felapton in Figure

III and Bramantip and Fesapo in Figure IV. The reason

for this is that in dealing with classes by the methods of

Boolean algebra we do not make any assumptions as to

whether or not the classes we are dealing with have members.

But it was a tacit assumption of the traditional logic that

all the classes mentioned in the argument had members.

(See Chapter V, Section 12).

Each of the remaining fifteen valid moods may be

validated in this way. It is, however, unnecessary to do

this. For it can be shown that all these moods can be

expressed without any loss of logical force in one of the
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two following forms. Each of these two forms can be

proved by the method of expansion exemplified above.

(a) (b)

AB = A'B =
B'C = EC ^

CA = CA ^
"

(a) is the form applicable when the conclusion is universal

and (b) when the conclusion is particular.

BIBLIOGRAPHICAL NOTE

Appendix

By far the best treatment of the classical syllogistic logic is

given by Keynes (17). Other good expositions are in Joseph (15),

Stebbing (28), Mace (22), and Bennett and Baylis (2). The last

book also contains an excellent exposition of the algebra of

classes. Elementary but very clear accounts of the algebra of

classes will be found in Langer (1 9), Ambrose and Lazerowitz (1 ),

Eaton (10), and Tarski (31). More detailed treatments are given

by Lewis and Langford (20), Couturat (8), and Keynes (17), the

last being somewhat hampered by an antiquated symbolism.

The classical exposition is in Boole (5), developed by Jevons

[(13) and (14)], and Venn (32). A very readable and enter-

taining approach is given in Lewis Carroll (6) but the symbolism

used is clumsy and out-dated.
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EXERCISES

Chapter I

1. Clarify the logical form of the following arguments by

substituting symbols for terms and propositions as shown in

Section 2 of Chapter I. Which of the arguments have the

same logical form ?

(a) No naturalists are unobservant. Some unobservant people

are interested in animals. Therefore, some people who are

interested in animals are not naturalists.

ib) All shareholders are entitled to vote at the annual general

meeting. All directors are shareholders. Therefore, all directors

are entitled to vote at the annual general meeting.

(c) If England lose the test match, then the team will be

changed. If the wicket is soft at Lord's, England will lose the

test match. The team will not be changed. Therefore, there

will not be a soft wicket at Lord's.

{d) No bats are feathered. All bats can fly. Therefore,

some animals which can fly are not feathered.

(e) All ratepayers are entitled to vote in municipal elections.

Some parliamentary electors are not entitled to vote in municipal

elections. Therefore, some parliamentary electors are not

ratepayers.

(/) If the truce negotiations succeed or the United Nations

approve a disarmament plan, then armament shares will slump.

Armament shares will not slump. Therefore, the United Nations

will not approve a plan for disarmament.

(g) If atomic power can be widely applied in industry, then

the coal mining industry will lose its importance. If the coal

mining industry loses its importance, there will be an increase

in unemployment. There will not be an increase in unemploy-
ment. Therefore, atomic power cannot be widely applied in

industry.

(/?) If it is false that prices will rise and taxes will not be

reduced, then there will be increased spending. If there is

increased spending, there will be a fall in national savings.

165
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There will not be a fall in national savings. Therefore, it is

false that either prices will not rise or taxes will be reduced.

(/) If there is a change of government, then confidence in the

pound will not be restored. If confidence in the pound is not

restored, then imports will be restricted. Therefore, if imports

are not restricted, there will not be a change of government.

(/) If A's evidence is true, then B is not guilty. If B is not

guilty, then C's evidence is perjured. Therefore, if C's evidence

is not perjured, A's evidence is not true.

(A:) All bishops are learned men. Some Christians are

bishops. Therefore, some Christians are learned men.

(/) No defenders of democracy are fascists. All defenders of

democracy are believers in human equality. Therefore, some
believers in human equality are not fascists.

Chapters II and III

1. Construct truth-tables for the following prepositional

formulae. Which of them are tautologies ?

{a) p=>ipy q).

ib) (pWq) =>p.

(c) p Zi(p.q).

id)

(e)

if)

is)

(h)

(0

(./)

(A-)

(0

im)

(/O

(o)

p.q) Zip.

p.q) Z3(p\/q).

{p=>q)Z3r)=>(p=>{qZt r)).

pZ3q)Z3i^p ZD ^q).

pZiq)Zii^q Z3~/7).

(~/?=3~^)0~r)l3~(/73(9=3 r)).

(pV^)3/-)3((~/7Vr).(~9Vr)).

{p.q)=ir)=>i{'^p.r)yi^q.r)).

{p.q)^r) ^ (p 3 (? ID /•)).-

ipZ^^q)Z2{~pZ3q))Zi{pZ2r).

{p ZSq) 3/)l3((/-=)/7) Z>{s 3/7)).

pV<7V/)=)((~p=)A-).(~^ =)r)).

2. Reduce the formulae of (1) to conjunctive normal form.
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3. Test the following arguments for validity by constructing

the appropriate truth-tables

:

(a) If Jones is guilty or the police are suspicious, then either

Jones will bribe the police or he will not remain in town.

Therefore, if Jones remains in town or the police are suspicious,

it is false that he is both guilty and is not bribing the police.

(b) If Mr Moneybags takes penicillin and is properly looked

after, he will recover. If he recovers, his relatives will be

disappointed. His relatives will not be disappointed. There-

fore, either he won't take penicillin or he won't be properly

looked after.

(c) If there is an election, the government will not remain in

power. Either the government will remain in power or there

will be a coup d'etat. There won't be a coup d'etat. Therefore,

there won't be an election.

{d) If A is elected, then B will resign. If C is elected, then

B won't resign. If A is elected, then C won't be elected. There-

fore, B will resign.

{e) If A is elected, then B will resign. If C is elected then

B will not resign. Therefore, if A is elected, C won't be elected.

(/) If the price of gold shares falls or boring operations fail,

then either Jones will go bankrupt or he will commit suicide.

If the boring operations fail or Jones goes bankrupt, there will

be a prosecution. There will not be a prosecution. The price

of gold shares will fall. Therefore, Jones will commit suicide.

{g) If A resigns, the party will split and there will be an

election. If there is an election, the international situation

won't improve. The international situation will improve.

Therefore, A won't resign.

(//) If the evidence was forged or the police are bribed, then

A is not guilty. If the chief witness was not telling the truth,

then the evidence was forged. If the chief witness was telling

the truth, then A is guilty. Therefore, the police were not

bribed.

(/) If it is false that A's flight implies A's guilt, then if the

evidence was properly recorded, the police were not impartial.

Therefore, if A has fled and the evidence was properly recorded,

then, if the police were impartial, A is guilty.
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(j) If the play is good and the acting is not incompetent, then

either the public will respond or they cannot appreciate good
theatre. Therefore, if the public can appreciate good theatre

and the acting is not incompetent, if the play is good, the public

will respond.

(k) If there is a slump or strikes increase, then Russia will

grow stronger in Europe and America will not increase dollar

aid. If there is a slump, Russia will not grow stronger in

Europe. If there is not a slump, America will increase dollar

aid. Therefore, strikes will not increase.

(/) He who hath wife and children giveth hostages to fortune.

Jones is a bachelor. Therefore, Jones does not give hostages to

fortune.

(m) If exports increase, then the labour situation will improve

and there won't be a financial crisis. If there is no financial

crisis, there will be no need to cut the armaments programme.
It will be necessary to cut the armaments programme. There-

fore, exports will not increase.

(n) IfA beats B, then if he beats C he will also beat D and win

the cup. He will beat C but he won't beat D. Therefore, A
won't beat B.

(o) If the government is re-elected, then it is false that public

confidence will be restored and trade will improve. It is false

that either public confidence won't be restored or trade won't

improve. Therefore, the government will be re-elected.

4. Test the validity of {a) to (o) of (3) above by the short

truth-table method where this can be used.

5. Test the validity of {a) to (o) of (3) by reduction to con-

junctive normal form.

6. Test the validity of the following arguments by the method
of equivalent substitutions (see Chapter III, last section)

:

(a) If the cost of living rises or governmer^ revenues increase,

then salary increases will be granted. No salary increases will

be granted. Therefore, government revenues will not increase.

(6) If the police do not catch the murderer within a week,

there will be a public outcry. If there is a public outcry, then

the chief of police will resign. The chief of police will not resign.

Therefore, the police will catch the murderer within a week.
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(c) If the picture is not a forgery, then it is valuable. It is

not the case that either it is a forgery or that it is not sought

after by collectors. If the picture is not by Vermeer, then it is

not sought after by collectors. Therefore, the picture is valuable

and it is by Vermeer.

{d) If the insurance company refused the policy, then Messrs

A have a bad reputation and the property is not valuable. If

Messrs A have no insurable interest and the property is not

valuable, then the proposed transaction is suspect. Therefore,

if Messrs A have no insurable interest and the insurance company
have refused the policy, then the proposed transaction is suspect.

{e) If A resigns, then either B will not be elected or C will

demand an enquiry. If the newspapers get the story, then C
will not demand an enquiry. If B is not elected, then C will

demand an enquiry. The newspapers will get the story. There-

fore, A will not resign.

(/) If, if there is not a good harvest, then the price of bread

wiU rise, then if unemployment increases, there will be riots in

the capital. Therefore, either there will be riots in the capital

or unemployment will not increase, or the price of bread will not

rise and it is true that either unemployment will not increase or

there will be riots in the capital or there will be a good harvest.

(g) If the government falls, then, if the opposition are un-

prepared, either there will be a coup d'etat or foreign powers
will intervene. If there is a coup d'etat or foreign powers
intervene, then the opposition will not be unprepared. The
opposition are unprepared. Therefore, the government will

not fall.

(//) If the report is true or the journalists have not been bribed,

then if the government denies the report, if the journalists have

been bribed they will attack the government. Therefore, if it is

false that if the journalists have been bribed and the government
deny the report, the journalists will attack the government, then

the report is not true and the journalists have been bribed.

(/) If, if the opposition win the election, there will be a boom
on the Stock Exchange, then the government have lost the

confidence of the electorate and they will not be re-elected.

They will be re-elected. Therefore, the opposition will win the

election.
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(j) If either Jones was present or Brown was absent, then if

the meeting was not postponed, the case will be unfairly

presented. If either Brown was absent or the meeting was
postponed, then there will be no public protest. Jones was
present. There will be a public protest. Therefore, the case

will be unfairly presented.

Chapter IV

1. Derive the following formulae from the rules and axioms
given in Chapter IV

:

(a) pZ3(^p=iq). (b) q^{p-=iq).

(r) (/7 3-^)3(^/3 -77). (d) (gWp)^{pyq).

ic) p=>(qyp). (f) (p=3q)=i{{r=)p)Zi
(r =3 q)).

(g) p-nipMp). {h) ipZi ^p)ZD ~p.

ii) {^pN ^q)^^{p.q). (y) r^ip.^p).

Chapter V and Appendix

1. Using the decision procedure explained in Chapter V,

Sections 11 and 12, test the validity of examples {a), {b), (d),

(A), and (/) of Chapter I above.

2. Use this procedure to test the validity of the following

:

(a) All members of the Church Assembly believe in the

Thirty-nine Articles. All believers in the Thirty-nine Articles

appreciate theological niceties. Therefore, all members of the

Church Assembly appreciate theological niceties.

(b) No sharks are vegetarians. All large fish in Sydney
Harbour are sharks. Therefore, no large fish in Sydney Harbour
are vegetarians.

(c) All psychiatrists are credulous. Some scientists are not

credulous. Therefore, some psychiatrists are not scientists.

{d) No neurotics have a well balanced personality. Some
artists are neurotic. Therefore, some artists do not have a

well balanced personality,

U) All trade unions aim at the welfare of the working man.
Some trade unions restrict industrial efficiency. Therefore,
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some organisations which restrict industrial efficiency aim at the

welfare of the working man.

(/) No written examination is a safe test of merit. All

written examinations demand considerable memory knowledge.

Therefore, some tests demanding considerable memory knowledge

are not safe tests of merit.

{g) All dishonest practices are socially undesirable. All

gambling is socially undesirable. Therefore, some gambling is

dishonest practice.

(/j) All theories based on empirical evidence deserve rational

consideration. Some psychological theories are not based on
empirical evidence. Therefore, some psychological theories do
not deserve rational consideration.

(/) All theories based on empirical evidence deserve rational

consideration. Some psychological theories do not deserve

rational consideration. Therefore, some psychological theories

are not based on empirical evidence.

ij) No religious doctrines can be established by scientific

evidence. Some religious doctrines command the assent of

intelligent people. Therefore, some doctrines that command the

assent of intelligent people cannot be established by scientific

evidence.

(A.) All babies are illogical. Nobody is despised who can

manage a crocodile. All illogical persons are despised. There-

fore, no babies can manage a crocodile. (Lewis Carroll.)

(/) No one takes in The Times unless he is well educated. No
hedgehogs can read. Those who cannot read are not well

educated. Therefore, no hedgehog takes in The Times. (Lewis

Carroll.)

{m) No boys under twelve are admitted to this school as

boarders. All the industrious boys have red hair. None of the

day boys learn Greek. None but those under twelve are idle.

Therefore, none but red-haired boys learn Greek in this school.

(Lewis Carroll.)

{n) No kitten that loves fish is unteachable. No kitten with-

out a tail will play with a gorilla. Kittens with whiskers always

love fish. No teachable kitten has green eyes. No kittens

have tails unless they have whiskers. Therefore, no kitten with

green eyes will play with a gorilla. (Lewis Carroll.)
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(o) No one who is going to a party ever fails to brush his hair.

No one looks fascinating if he is untidy. Opium eaters have no

self-command. Everyone who has brushed his hair looks

fascinating. No one wears white kid gloves unless he is going

to a party. A man is always untidy if he has no self-command.

Therefore, opium eaters never wear white kid gloves. (Lewis

Carroll.) (Hint: Let the universe of discourse be "persons":

A = going to a party, B = having brushed one's hair,

C = having self-command, D = looking fascinating, E = opium

eaters, F = tidy, G = wearing white kid gloves.)

3. Apply the rules of the classical syllogism given in the

Appendix to test the validity of (a) to (y) of (2) above.

4. Use the methods of Boolean algebra to test the validity of

the examples in (2) above.

5. Put the following Boolean expressions into normal form:

(a) AB' -f A'.

(b) A' + AC+ ABC + AB'C.

(c) AB + A'C + C.

(d) (AB + A'Cy + B.

{e) (/4 + D)' (B+ Cy + AD.

(/) (AB + BCy + B'C.

(g) (A + BC+A'DY + A'C.
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